• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 264
  • 183
  • 36
  • 35
  • 30
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 6
  • 6
  • 5
  • 4
  • Tagged with
  • 698
  • 698
  • 248
  • 230
  • 134
  • 97
  • 83
  • 80
  • 67
  • 66
  • 65
  • 63
  • 56
  • 54
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
601

Alloy Design and Characterization of γ′ Strengthened Nickel-based Superalloys for Additive Manufacturing

Xu, Jinghao January 2021 (has links)
Nickel-based superalloys, an alloy system bases on nickel as the matrix element with the addition of up to 10 more alloying elements including chromium, aluminum, cobalt, tungsten, molybdenum, titanium, and so on. Through the development and improvement of nickel-based superalloys in the past century, they are well proved to show excellent performance at the elevated service temperature. Owing to the combination of extraordinary high-temperature mechanical properties, such as monotonic and cyclic deformation resistance, fatigue crack propagation resistance; and high-temperature chemical properties, such as corrosion and oxidation resistance, phase stability, nickel-based superalloys are widely used in the critical hot-section components in aerospace and energy generation industries. The success of nickel-based superalloy systems attributes to both the well-tailored microstructures with the assistance of carefully doped alloying elements, and the intently developed manufacturing processes. The microstructure of the modern nickel-based superalloys consists of a two-phase configuration: the intermetallic precipitates (Ni,Co)3(Al,Ti,Ta) known as γ′ phase dispersed into the austenite γ matrix, which is firstly introduced in the 1940s.  The recently developed additive manufacturing (AM) techniques, acting as the disruptive manufacturing process, offers a new avenue for producing the nickel-based superalloy components with complicated geometries. However, γ′ strengthened nickel-based superalloys always suffer from the micro-cracking during the AM process, which is barely eliminated by the process optimization. On this basis, the new compositions of γ′ strengthened nickel-based superalloy adapted to the AM process are of great interest and significance. This study sought to design novel γ′ strengthened nickel-based superalloys readily for AM process with limited cracking susceptibility, based on the understanding of the cracking mechanisms. A two-parameter model is developed to predict the additive manufacturability for any given composition of a nickel-based superalloy. One materials index is derived from the comparison of the deformation-resistant capacity between dendritic and interdendritic regions, while another index is derived from the difference of heat resistant capacity of these two spaces. By plotting the additive manufacturability diagram, the superalloys family can be categorized into the easy-to-weld, fairly-weldable, and non-weldable regime with the good agreement of the existed knowledge. To design a novel superalloy, a Cr-Co-Mo-W-Al-Ti-Ta-Nb-Fe-Ni alloy family is proposed containing 921,600 composition recipes in total. Through the examination of additive manufacturability, undesired phase formation propensity, and the precipitation fraction, one composition of superalloy, MAD542, out of the 921,600 candidates is selected. Validation of additive manufacturability of MAD542 is carried out by laser powder bed fusion (LPBF). By optimizing the LPBF process parameters, the crack-free MAD542 part is achieved. In addition, the MAD542 superalloy shows great resistance to the post-processing treatment-induced cracking. During the post-processing treatment, extensive annealing twins are promoted to achieve the recrystallization microstructure, ensuring the rapid reduction of stored energy. After ageing treatment, up to 60-65% volume fraction of γ′ precipitates are developed, indicating the huge potential of γ′ formation. Examined by the high-temperature slow strain rate tensile and constant loading creep testing, the MAD542 superalloy shows superior strength than the LPBF processed and hot isostatic pressed plus heat-treated IN738LC superalloy. While the low ductility of MAD542 is existed, which is expected to be improved by modifying the post-processing treatment scenarios and by the adjusting building direction in the following stages of the Ph.D. research. MAD542 superalloy so far shows both good additive manufacturability and mechanical potentials. Additionally, the results in this study will contribute to a novel paradigm for alloy design and encourage more γ′-strengthened nickel-based superalloys tailored for AM processes in the future. / <p>Additional funding agencies: Agora Materiae Graduate School for multidisiplinary PhD students at Linköping University, and Stiftelsen Axel Hultgren.</p>
602

Effects of manufacturing chain on mechanical performance : Study on heat treatment of powertrain components

Fahlkrans, Johan January 2015 (has links)
The increasing demands for lightweight designs with high strength call for improved manufacturing processes regarding heat treatment of steel. The manufacturing process has considerable potential to improve the mechanical performance and to obtain more reliable results with less variation. The goal of this thesis is to establish new knowledge regarding improved manufacturing processes in industrial heat treatment applications. Three research questions with associated hypotheses are formulated. Process experiments, evaluation of the mechanical performance, and modelling of the fatigue behaviour assist in answering the questions. The gas quenching procedure following low-pressure carburising differs from the conventional procedure of gas carburising and oil quenching. It is shown that the introduction of a holding time during the low-temperature part of the quench has a positive effect on mechanical properties, with some 20 percent increase in fatigue strength. This is attributed to increased compressive surface residual stress and stabilisation of austenite. Tempering is a common manufacturing process step following hardening in order to increase the toughness of the steel. However, the research shows that the higher hardness from eliminating tempering from the manufacturing process is beneficial for contact fatigue resistance. The untempered steel showed not only less contact fatigue damage but also a different contact fatigue mechanism. Straightening of elongated components is made after heat treatment in order to compensate for distortions. The research shows that straightening of induction hardened shafts may lead to lowering of the fatigue strength of up to 20 percent. A fracture mechanics based model is developed to estimate the effects of straightening on fatigue strength. / Ökande krav på höghållfasta lättviktskonstruktioner kräver förbättrade tillverkningsprocesser för värmebehandling av stål. Det finns stor potential att förbättra mekanisk prestanda och att erhålla mer tillförlitliga resultat med mindre variation genom att förbättra tillverkningsprocessen. Målet med denna avhandling är att etablera ny kunskap kring tillverkningsprocesser inom industriella värmebehandlingsapplikationer. Tre forskningsfrågor med tillhörande hypoteser formuleras. Processexperiment, utvärdering av mekanisk hållfasthet och modellering av utmattningsbeteende bygger upp besvarandet av frågorna. Gaskylning som följer lågtrycksuppkolning skiljer sig från det konventionella förfarandet med gasuppkolning och släckning i olja. Resultaten visar att en hålltid i den nedre delen av kylningsförloppet har positiv inverkan på utmattningshållfastheten. Orsaken till förbättringen hänförs till ökade tryckrestspänningar samt stabilisering av austenit. Anlöpning är en vanlig tillverkningsprocess som efterföljer härdning för att öka stålets seghet. Forskningen visar däremot att den högre hårdheten för oanlöpt stål är fördelaktig för motstånd mot kontaktutmattning. Oanlöpt stål visade mindre mängd kontaktutmattningsskador och även en annan skademekanism. Riktning av långa komponenter görs efter värmebehandling för att kompensera för de formförändringar som uppstår. Forskningen visar att riktning av induktionshärdade axlar kan leda till sänkning av utmattningshållfastheten med upp till 20 procent. En brottmekanisk modell som uppskattar effekten av riktning på utmattningshållfasthet presenteras. / <p>QC 20150410</p>
603

Development of a heat treatment method to form a duplex microstructure of lower bainite and martensite in AISI 4140 stee

Claesson, Erik January 2014 (has links)
Research on bainite and martensite structures has indicated that lower bainite needles have a refining effect on the lath martensitic structure. Lower bainte needles partitions prior austenite grains and will consequently have a refining effect on the subsequent formed lath martensite. Smaller austenite grains will result in smaller lath martensitic packets and blocks and will result in enhanced mechanical properties.   In order to create a variation of lower bainte structure in a matrix of martensite, two different heat treating methods were tested. The work was focused towards the formation of lower bainite during isothermal heat treating in molten salt, above and below the MS-temperature. Both un-tempered and tempered samples were analyzed .Two different materials were tested, both were AISI 4140 but with a slightly difference in hardenability. The material provided by Ovako Steel is 326C and 326F the later had a higher hardenability. In order to better distinguish the two structures from each other when studied under a microscope, a variation of etching methods were tested.  It was possible to create a variation of lower bainite structures in a matrix of martensite.  326F shows less amount of lower bainite and provides a higher average surface hardness before tempering.
604

Increase the capacityof continuous annealing furnaces at Ovako

Dahlqvist, v January 2012 (has links)
The capacity of soft annealing of low alloyed tubes at Ovako’s continuous annealing furnaces have been evaluated by comparing how it is done today with information from published and internal articles on the subject. It was found that it is possible to reduce the cycle time by 30 % for one furnace, 55 % for one furnace and 72 % for two furnaces. Two separate fullscale tests were made to assess whether the faster soft annealing procedure was feasible. The tests were performed without any reconstruction of the furnace and were made by continuously vary the speed of the batch inside thefurnace. The temperature in the batch was measured and compared with results from computer simulations of the heating/cooling sequences. The computer simulations were performed in COMSOL. The soft annealing was evaluated according to the SEP-520 standard ,which means evaluating the microstructure and hardness. The results show that the faster heat treatment could yield lower grades than today but still meet it’s requirements. In order to achieve this increase  a reconstruction of the furnaces is needed and the reconstruction is  briefly treated in the report. Ideas to further increase the speed of the soft annealing procedure are also presented.
605

Process Parameters for Creation of Porous Stainless Steel Surfaces

Hultstein, Eric January 2011 (has links)
Detta examensarbete ämnar att undersöka värmebehandlingsmetoder för att skapaporösa austenitiska rostfria stål samt utvärdera ifall dessa ytor medför förbättringargentemot referensmaterialen. De porösa ytorna skapades genom en två-stegs metod.Prover oxiderades initialt i en fuktig eller torr argon atmosfär för att sedan reducerasi ren vätgas. De material som använts i denna studie är austenitiska rostrifa stål ienhlighet med standardena 1.4301 (304), 1.4404 (316L), 1.4435 (316L) och F-138 (316LVM).Oxidationsprocessen genomfördes under temperaturer över 630 ◦ C under 150 - 1200 s.Efteråt reducerades proverna i ren vätgas under 150 - 2400 s.För att karakterisera processen undersöktes proverna med svepelektronmikroskopsamt elektron-dispersiv röntgenspektrometer. Vissa prover har även analyserats medhjälp av ljusoptiskt mikroskop, bildanalys samt värmeledningsförmåga. Resultaten visarklart att alla undersökta material kan uppvisa porösa strukturer, dock kan inte allaprocessparametrar möjliggöra uppkomsten av dessa. Generellt sett beror porositeten påden underliggande strukturen skapade under oxidationen. Det har ännu inte varit möjligtatt karaterisera några kristallstrukturer, kemisk analys tyder dock på närvaro av kromoxid,(Cr,Fe) spineller samt järnoxider. Resultaten konstaterar att en kort oxidationstid normaltbildar kromoxid medan längre oxidation medför uppkomsten av järnoxider. En ökadreduktionstid leder till större och färre porer jämfört med kortare reduktionstider. Kemiskaanalyser visar enhälligt att porösa strukturer innahåller till största del järn. En trolig orsaktill detta beteende kan kopplas till det fenomen där krom förångas under oxidation i fuktigaatmosfärer. Följaktikligen blir även ytan känslig för korrosion då majoriteten av krom harförsvunnit.Utvärdering av egenskaperna hos dessa ytor visar en tydlig förbättring i värmeledning vianaturlig konvektion. Värmeväxlingen mellan två uider uppvisar dock inte någon störreskillnad förutom under låga ödeshastigheter då en porös yta tenderar att transporterabort mer värme / This work aim to investigate a novel process by means of process parameters for creationof porous austenitic stainless steels surfaces as well as investigate if they permit anyimprovements compared to reference materials. Porous surfaces were created by a two-step method; samples were initially oxidised in a wet argon atmosphere and subsequentlyreduced in a pure hydrogen. The materials used in this investigation are all stainless steelswith specications according to steel grades 1.4301 (304), 1.4404 (316L), 1.4435 (316L)and F-138 (316LVM). The oxidation process is performed above 630 ◦ C for 150 - 1200 s in aow of wet argon or dry air and reduction is performed with a ow hydrogen for 150 - 2400 s.In order to understand the heat treatment processes, samples were characterised by usinga scanning electron microscope together with an electron dispersive x-ray spectrometer.However, light optical microscopy, image analysis and heat transfer measurement werealso used. Results show that all materials can obtain porous structures even though itis evident some process parameters cannot support successful creation of porosity. Ingeneral, the porosity depends on the structure created upon oxidation. It has not beenpossible to identify any crystal structures but compositional analysis as well as previousliterature suggest presence of chromia, (Cr,Fe) spinels and iron oxides. It is concluded thatshort time oxidation frequently creates chromia layers and prolonged oxidation inducesiron oxides due to breakaway oxidation. An increased reduction time results in larger andfewer pores. Compositional analyses show that all porous morphologies are created withina very iron rich layer. It is suggested that wet oxidation promote chromium evaporation,which consequently reduces the amount of chromium in the surface and enables iron oxideto rapidly form. Furthermore, results show that the porous layer is very susceptible tocorrosion as almost no chromium is present after the heat treatment. Evaluation of the properties of porous surfaces reveals a signicant improvement in heattransfer due to natural convection. Heat exchange between uids is though not enhancedgreatly by porous surfaces, a small improvement can be seen for low ow rates but for largerows no improvement is found.
606

Analýza příčin vzniku trhlin v ráfcích kol / Analysis of the causes of cracks on the wheeel rims

Plundrák, David January 2013 (has links)
This thesis looks for the causes of cracks in bicycle rims in the most stressed areas (in places holes for wires). For this reason, in this work is the stress and strain analysis of a simple model of the rim to the working load is given and further the complete production process of the rim is described. As an experimental material were used rims from different producers of aluminum alloy EN AW 6061 and EN AW 6082 T6 temper, in which a crack started to spread. For assessment of rims materials the methods of optical spectroscopy, optical microscopy, scanning electron microscopy, Vickers hardness test were used and for finding another crack penetration test was performed. Based on the performed experiments bad design solution of rivets was found in the rim 1. Broken rivets initiated fatigue cracks. Material of rim 1 was alright. The other two rims were deficiencies in materials. For the rim 2 was a problem with coarse-grained recrystallized structure. The insufficiently rapid cooling for the rim 3 caused exclusion hardening phase (particularly copper phase) at grain boundaries. Moreover, the rim 3 is not cured to the required parameters. Aluminium alloys are an ideal material for bicycle rims. However, they require reliable design solutions and meeting the physical metallurgy, which lies in the knowledge and use of influences of chemical composition, forming and heat treatment on mechanical, chemical, physical and technological properties.
607

Struktura a vlastnosti hořčíkových slitin Mg-Ca-Zn / Structure and properties of magnesium alloys Mg-Ca-Zn

Hlavnička, Jiří January 2014 (has links)
This master’s thesis deals with design and preparation of a new biodegradable magnesium alloy based on Mg-Ca-Zn. Based on information from literature, the Mg-3Zn-2Ca alloy was designed. The base material was produced by gravity casting and the evaluation in the as-cast and heat treated state was performed. For preparation of the experimental material, following methods were designed: squeeze casting, hot rolling and the ECAP. During preparation by hot rolling, no optimal conditions were found and significant cracks occurred in both as-cast and heat treated material. In the case of experimental material, prepared by the ECAP method with back-pressure, better combination of stress-strain properties was observed. Also the squeeze casting method showed improvement; especially the amount of casting defects was eliminated. The evaluation of microstructure and mechanical properties was performed by the light and scanning electron microscopy, RTG phase analysis and the tensile and compression tests.
608

Koroze neželezných kovových materiálů / Corrosion of Nonferrous Metal Materials

Ševčíková, Barbora January 2018 (has links)
In the presented dissertation thesis, I closely focused on corrosion resistance of non-ferrous metals. For full understanding of the possibilities for increasing corrosion resistance, it was vital to initially recognize the influences to the corrosion system of the samples and their surrounding environment. For this purpose, I focused on heat treatment, corrosion, and protective coatings, in the theoretical part of the thesis. For the subsequent research, it was necessary to define several constant variables, first. For this purpose, I have chosen a group of magnesium alloys, namely AZ91 Alloy and 3.5 % NaCl Electrolyte. AZ91 Alloy is of heterogenous structure formed by a solid solution of aluminum in magnesium, intermetallic phase in Mg17Al12, and their eutectic. Local microcells tend to occur in these heterogenities, which leads to faster corrosion. In order to increase corrosion resistance of the alloy, I used a combination of heat treatment and protective phosphate coating. For creating of the desired structure, which further affects compact coating formation, I selected a process involving solution heating with precipitation hardening T6. Secondary goals of the thesis involved optimization of standard technical procedures for the sake of increasing efficiency. With regard to this goal, I introduced optimized heat treatment T6 using accelerated cooling of a sample in water and liquid nitrogen. A modification besides the standard phosphating procedure was carried out with no activation step. For evaluation of corrosion resistance of the samples, I conducted water immersion tests using electrochemical methods; such as potenciodynamic curves combined with electrochemical impedance spectroscopy. In order to streamline the evaluation of the corrosion surface in technical practice, I used automatic detection. Substantial improvement of corrosion resistance of the above mentioned system, compared to heat-untreated samples, was proven through electrochemical methods. Due to accelerated cooling, a more homogeneous structure was achieved, which could be further utilized to create more uniform protective coating. For some phosphate coating, specifically manganese phosphate coating, I identified certain modifications that were in line with the set goals; i.e. skipping the activation phase, and using automatic detection for evaluation of uniform corrosion on the samples.
609

Investigation Into the Localized Corrosion of Aluminum-Copper-Lithium Alloy 2099

Hanna, Benjamin January 2018 (has links)
No description available.
610

Investigating "Lithic Scatter" Variability: Space, Time, and Form

Manning, Kate M 07 May 2016 (has links)
Using flake dimensions and attributes commonly agreed are associated with site use, occupation age, and occupation duration, it was argued that relative estimations of site function and occupation age could be determined using debitage. This is particularly beneficial for assemblages that have little to no diagnostics that could provide a general cultural period for one or more occupations at a site. The results of this study suggest that, although certain attributes are generally associated with lithic production stage, relative age, and duration indicators, they were not all applicable within this study. The methods employed were relatively successful; however, reducing the number of classes, removing of a dimension, and more sites that meet the definition of lithic scatter is needed. Furthermore, testing occupation duration using the number of breaks on a flake is not possible unless it is proven a single occupation site.

Page generated in 0.0697 seconds