• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 20
  • 3
  • 1
  • 1
  • Tagged with
  • 108
  • 108
  • 25
  • 20
  • 17
  • 16
  • 16
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Heparan Sulfate Biosynthesis – Clues from Knockout Mice

Ledin, Johan January 2004 (has links)
In the extracellular space, many specialized proteins are located to support cells and to mediate cell-cell signalling. One class of such molecules is heparan sulfate (HS) proteoglycans, which are proteins with different properties and locations but all of them decorated with long unbranched HS polysaccharide chains. During biosynthesis the HS chains are modified by sulfation and a C5-epimerase converts some glucuronic acid residues to iduronic acid. The patterns of the modifications vary distinctly between tissues and developing stages and give HS chains different affinity for biologically important proteins. Thus, the regulation of HS biosynthesis is likely to influence a wide variety of biological events. This thesis focuses on the biosynthesis of HS in animals with targeted disruptions in genes important for HS production. The N-deacetylase N-sulfotransferase (NDST) is a key enzyme in HS biosynthesis, directing other modifications. We show that NDST isoforms have very different roles in HS biosynthesis. Inactivation of NDST1 affects HS biosynthesis in all tissues. In embryonic liver HS from NDST1-/- mice the N-sulfation was decresed with twothirds, while the absence of NDST2 did not affect HS structure. In the absence of NDST1 in the liver, however, NDST2 is active in HS N-sulfation. In a study of embryonic stem cells lacking both NDST1 and NDST2, no N-sulfate groups could be detected. 6-O-sulfate groups were, however, still present at half of its normal level. This was an unexpected finding since 6-O-sulfotransferases have been thought to be strictly dependent on N-sulfate groups for substrate recognition. By adapting an automated method for HS analysis to mammalian tissues, we could extend our analyses to more tissues and other transgene models. We also developed a protocol to create a sensitive “fingerprint” of HS structure. With these methods we could determine the individual HS structure of different mouse tissues.
92

Functions of Heparan Sulfate During Mouse Development : Studies of Mice with Genetically Altered Heparan Sulfate Biosynthesis

Ringvall, Maria January 2004 (has links)
Heparan sulfate (HS) is a ubiquitous polysaccharide on the cell surface and in the extracellular matrix. HS is an important actor in the regulation of cell signaling, especially in the developing embryo. In combination with cell culture and biochemical experiments, in vivo studies of genetically modified animals have pointed out the sulfation pattern of HS as highly important for binding of ligands, their receptors and other signaling modulators. The sulfation pattern of an HS chain is gained by several modifying steps, performed by multiple enzymes during biosynthesis in the Golgi apparatus. By alterations of sulfation pattern, and the amount of sulfate groups, a cell can regulate the binding properties of its HS to different molecules. The most highly sulfated form of HS is called heparin, and can only be found intracellularly in mast cells. This thesis describes the phenotypes and the alterations in HS/heparin biosynthesis of two genetically modified mouse strains deficient in N-deacetylase/N-sulfotransferase-1 (NDST1) and -2 (NDST2) respectively. We have found NDST1 to be important for correct sulfation of HS and that NDST2 is crucial in heparin biosynthesis. NDST2 deficient mice completely lack heparin and therefore have a severe mast cell phenotype. NDST1 deficient mice produce undersulfated HS and show several developmental disturbances. Some NDST1 embryos die in utero while the rest die neonatally due to breathing difficulties. Defect brain, eye and skeletal development has also been observed while some organs, such as the liver, appear to be largely unaffected. Several phenotypes are similar to defects seen in other mouse strains with impaired fibroblast growth factor and bone morphogenetic protein signaling, among others. This suggests the phenotypes of NDST1 deficient embryos to be of a multi factorial origin, in complete accordance to the many signaling pathways HS is suggested to modulate.
93

Heparan Sulfate and Development : A Study of NDST Deficient Mice and Embryonic Stem Cells

Holmborn, Katarina January 2006 (has links)
Heparan sulfate (HS) proteoglycans consist of sulfated HS chains covalently bound to core proteins. They are ubiquitously expressed, on the cell surface and in the extracellular matrix, throughout the body. During biosynthesis the HS chain is modified to generate a highly variable pattern of sulfated residues, able to interact with a wide variety of ligands, such as growth factors, morphogens and extracellular matrix molecules. The presence of HS proteoglycans is crucial during various developmental processes as they are involved in generation of morphogen gradients and influence the function of several growth factor pathways essential for tissue assembly and differentiation. In this thesis the phenotypes of two mouse strains, deficient in different isoforms of the HS biosynthetic enzyme N-deacetylase/N-sulfotransferase (NDST) have been analyzed. In addition, NDST deficient embryonic stem (ES) cells have been analyzed with regard to HS structure and differentiation capacity. Mice deficient in NDST1 die peri-natally. The embryos display an overall low-sulfated HS and several developmental defects, with a lung phenotype as the predominant cause of death. Mice deficient in NDST2 lack sulfated heparin in connective tissue type mast cells while HS structure is unaltered. These results indicate that NDST1 is the isoform mainly responsible for HS biosynthesis during development. However, NDST1/2 deficient embryos do not survive beyond E5.5 and have a greatly disturbed morphology, suggesting that NDST2 has an essential role during early embryonic development. HS synthesized by NDST1/2 deficient ES cells had a total lack of N-sulfate groups while, interestingly, about half of the 6-O-sulfate groups remained. This result was unexpected since 6-O-sulfotransferases have been thought to be strictly dependent on N-sulfate groups for substrate recognition. Further characterization of the NDST1/2 deficient ES cells during in vitro differentiation demonstrated that the expression pattern of markers for all three germ layers was disturbed. In addition, it was demonstrated that NDST1 is not needed for mast cell development, that lack of NDST2 results in abnormal mast cells and that no mast cells is formed from NDST1/2 deficient ES cells.
94

Effets du virus MHV3 sur les propriétés inflammatoires des cellules endothéliales cérébrales et des macrophages myéloïdes

Gosselin, Annie January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
95

Cell disorders in lysosomal storage diseases

Roy, Elise 17 February 2012 (has links) (PDF)
Mucopolysaccharidosis type IIIB (MPSIIIB) is a lysosomal storage disease (LSD) characterized by accumulation of heparan sulfate oligosaccharides (HSO), which results in progressive mental retardation, neurodegeneration and premature death in children. The underlying mechanisms are poorly understood. Coming to a better understanding of the pathophysiology of MPSIIIB has become a necessity to assess the efficacy of gene therapy treatment regarding loss of neuronal plasticity, and to define the best conditions for treatment. To address the link between HSO accumulation and downstream pathological events, new cell models of MPSIIIB were created. First, induced pluripotent stem cells (iPSc) were generated from fibroblasts of affected children, followed by differentiation of patient-derived iPSc into a neuronal progeny. Second, a HeLa cell model was created in which expression of shRNAs directed against a-N-acetylglucosaminidase (NAGLU), the deficient enzyme in MPSIIIB, is induced by tetracycline. Success in the isolation of these different models was pointed by the presence of cardinal features of MPSIIIB cell pathology. Studies in these models showed that: I) HSO excreted in the extracellular matrix modifies cell perception of environmental cues, affecting downstream signalling pathways with consequences on the Golgi morphology. II) Accumulation of intracellular storage vesicles, a hallmark of LSDs is due to overexpression of the cis-Golgi protein GM130 and subsequent Golgi alterations. It is likely that these vesicles are abnormal lysosomes formed in the cis- and medial-Golgi which are misrouted at an early step of lysosome biogenesis, giving rise to a dead-end compartment. III) Other cell functions controlled by GM130 are affected, including centrosome morphology and microtubule nucleation. These data point to possible consequences on cell polarization, cell migration and neuritogenesis.
96

Etudes structurales par RMN des profils Saccharidiques d'Héparanes sulfates et de leur régulation cellulaire : Mise en place d'un protocole de marquage, de purification et d'analyse de chaines entières / Structural studies of heparan sulfate profiles and their cellular regulation by nmr : set up of a labeling and purification protocol for full-length chains analysis

Pegeot, Mathieu 11 December 2014 (has links)
Les glycosaminoglycanes (GAG) forment une famille de polysaccharides linéaires retrouvés dans tous les tissus, au niveau des matrices extracellulaires et des surfaces cellulaires. Les héparanes sulfates (HS) sont des membres importants de cette famille et sont liés à une protéine dite cœur pour former ensemble le protéoglycane (PG). Selon le tissu et la nature de la protéine cœur, les HS, composés d'unités disaccharidiques de N-acétylglucosamine (GlcNAc) et d'acide glucuronique (GlcA) [-4GlcAβ1-4GlcNAcα1-] vont subir de nombreuses modifications. En effet, les HS sont modifiés par différentes sulfatations au niveau des deux oses et une épimérisation de l'acide glucuronique en acide iduronique (IdoA). Les différentes structures saccharidiques élaborées vont pouvoir être alors interagir avec une très grande quantité de protéines et jouer des rôles divers dans l'inflammation, la prolifération cellulaire, l'angiogenèse, la réponse immunitaire, l'attachement viral…L'étude de la structure des HS, du fait de la nature flexible et hétérogène de ces molécules, a été principalement focalisée sur des analyses fragmentaires du polysaccharide au niveau des séquences d'interaction avec les protéines. Lors de ces dépolymérisations, des informations sur le polysaccharide, notamment l'épimérisation, sont perdues.Dans ce travail, nous avons développé une approche basée sur la résonance magnétique nucléaire (RMN) bidimensionnelle 1H-13C pour l'étude de la composition saccharidique des HS réalisée directement à partir des HS isolés de cellules marquées au 13C. Pour cela, un protocole efficace de marquage et de purification des polysaccharides a été mis en place. En intégrant le volume des pics à différents déplacements chimiques par RMN, cette analyse non-destructive permet de déterminer à la fois le profil de sulfatation et d'épimérisation des HS. Cette analyse est appliquée efficacement à différents types cellulaires et est de grand intérêt pour mieux comprendre les changements dans les structures d'HS qui ont lieu lors de régulations physiologiques ou lors de développement pathologiques.Ces résultats ont permis d'ouvrir la voie à l'analyse des HS directement au niveau des cellules par RMN du solide. Les études dans ce contexte représentent un enjeu majeur pour la compréhension des différents rôles des HS et leur capacité à interagir avec une myriade de protéines in vivo. / Glycosaminoglycans (GAGs) belong to a linear polysaccharide family which are found within all tissues, at the extracellular matrix and cell surfaces levels. Heparan Sulfates (HS) are one of the major members of this family, they are bound to a core protein to form altogether the so-called proteoglycan (PG). Depending on the localization and on the core protein, the HS – composed of a N-acetylglucosamine (GlcNAc) and a glucuronic acid (GlcA) [-4GlcAβ1-4GlcNAcα1-] building block – undergo various modifications. Indeed, HS can be sulfated at different positions on both monosaccharide and the GlcA can be epimerized into an iduronic acid (IdoA). The fine structures of the polysaccharide will be able to interact with a large range of proteins and play a plethora of roles such as in inflammation processes, cell proliferation, angiogenesis, immune responses, viral attachment…The HS structural studies, due to the flexibility and heterogeneity of the polysaccharide, have so far been restricted to HS fragments able to bind proteins. The depolymerization techniques induce valuable information losses such as epimerization.In this work, we have successfully developed a nuclear magnetic resonance (NMR)-based approach to study HS features from 13C metabolically enriched cells. For this, an effective protocol to label and purify HS has been set up. By integrating peaks' volumes at well-resolved 1H-13C chemical shifts by NMR, the sulfation, epimerization and disaccharide profile can be determined from full-length HS. This method has been used to study HS from various cell types and is of important interest to better understand changes in HS structures that occur through physiologic and pathologic events.The results obtained open the way to analyze HS directly at the cell surface via solid state NMR techniques. In this context, these studies are a major challenge to decipher the different roles of HS and their ability to interact with so many partners in vivo.
97

Surfaces biomimétiques pour caractériser les interactions induites par les glycosaminoglycanes aux niveaux moléculaire, supramoléculaire et cellulaire / Well-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels

Thakar, Dhruv 07 September 2015 (has links)
L'adhésion contrôlée et la migration orientée des cellules est fondamentale pour plusieurs processus physiologiques et pathologiques. Une famille de polysaccharides linéaires, connus sous le nom de glycosaminoglycanes (GAG) est impliquée dans l'organisation et la présentation des protéines de signalisation, les chimiokines, à la surface des cellules et dans la matrice extracellulaire (ECM). Les travaux concernent le développement de surfaces biomimétiques bien définies aux niveaux moléculaires et supramoléculaires pour l‘étude des mécanismes d'intéractions protéines-GAG et l'analyse de la réponse cellulaire à des signaux biochimiques et biophysiques spécifiques. L'objectif de cette étude est de mieux comprendre les communications cellule-cellule et cellule-matrice induites par les GAGs.En utilisant la ligation oxime, les GAGs peuvent être fonctionnalisés de manière stable par la biotine à leur extrémité réductrice, ce mode de couplage s'est avéré déterminant pour préparer des surfaces fonctionnalisées par les GAGs de manière stable. Une monocouche de streptavidine est utilisée comme plateforme modulable pour assembler séquentiellement les molécules biotinylées, avec une orientation et des densités de surface contrôlées. Des GAGs (les héparane sulfate (HS), en particulier), des chimiokines et d'autres composants de l'ECM (par exemple un ligand d'adhésion cellulaire, RGD) ont été assemblés reconstituant certains aspects des surfaces in vivo (cellules ou de l'ECM). La microbalance à quartz (QCM-D) et l'ellipsométrie spectroscopique nous ont permis de caractériser et de contrôler la présentation supramoléculaire du HS et du RGD. Ces surfaces modèles ont été utilisées pour étudier les interactions supramoléculaires entre le HS et la chimiokine SDF-1α/CXCL12α facteur d'origine stromale et pour analyser les réponses cellulaires aux signaux extracellulaires. Nos données apportent la preuve que la chimiokine, CXCL12α rigidifie les assemblages de HS, et que cet effet est dû à la réticulation des chaînes de HS induite par la protéine. La cinétique des interactions HS-chimiokine a été quantifiée en utilisant la résonance plasmonique de surface (SPR). Nous avons également démontré que le mode de présentation de la chimiokine sur la surface, en particulier la présence des HS, influence le comportement des myoblastes. Nos données montrent que les récepteurs cellulaires CXCR4 (récepteur de la CXCL12α) et l'intégrine (récepteur du RGD) peuvent agir en synergie pour contrôler l'adhésion et la migration cellulaire. Ces surfaces modèles fournissent des indications précieuses qui pourront être appliquées au domaine de la glycobiologie, par exemple, pour étudier le rôle des GAGs dans la migration cellulaire induite par les chimiokines. / The oriented migration and controlled adhesion of cells is fundamental to many physiological and pathological processes. A family of linear polysaccharides, known as glycosaminoglycans (GAGs), help organizing and presenting signaling proteins, so-called chemokines, on the cell surface and in the extracellular matrix thus regulating cellular behavior. The objective of this PhD thesis was to develop biomimetic surfaces that are highly defined and tunable, for mechanistic studies of GAG-protein interactions on the molecular and supramolecular levels, and to probe cellular responses to defined biochemical and biophysical cues to better understand GAG-mediated cell-cell and cell-matrix communications.Applying oxime ligation, GAGs could be stably functionalized with biotin at the reducing end, and these features proved crucial for the reliable preparation of GAG-functionalized surfaces. A streptavidin monolayer served as a ‘molecular breadboard' to sequentially assemble biotinylated molecules with controlled orientation and surface densities. GAGs (heparan sulfate (HS) in particular), chemokines and other ECM components (e.g. integrin ligands promoting cell adhesion, RGD) were assembled into multifunctional surfaces that recapitulate selected aspects of the in vivo situation. Quartz crystal microbalance (QCM-D) and spectroscopic ellipsometry permitted us to characterize and control the supramolecular presentation of HS and RGD. These model surfaces were used to study the supramolecular interactions between HS and the selected chemokine stromal derived factor SDF-1α/CXCL12α and to analyze cellular responses to extracellular cues. Our data provide evidence that CXCL12α binding rigidifies HS assemblies, and that this effect is due to protein-mediated cross-linking of HS chains. The kinetics of chemokine binding to HS was quantified using surface plasmon resonance (SPR). We also demonstrate that the way in which the chemokine is presented, and in particular the presence of HS, is important for regulating myoblast behavior. Our data shows that the cell surface receptors CXCR4 (the CXCL12α receptor) and integrins (the RGD receptor) can act synergistically in controlling cellular adhesion and migration. These surfaces can generate novel insights in the field of glycobiology, e.g. in dissecting the function of GAGs in chemokine-mediated cellular migration.
98

Cell disorders in lysosomal storage diseases / Défauts cellulaires dans les maladies de surcharge lysosomale

Roy, Elise 17 February 2012 (has links)
La mucopolysaccharidose IIIB (MPSIIIB) est une maladie de surcharge lysosomale (MSL) causée par une accumulation d’oligosaccharides d’héparane sulphate (OHS), induisant chez les enfants atteints un retard mental progressif, une neurodégénérescence et une mort prématurée. Les mécanismes physiopathologiques impliqués sont mal compris. Il est nécessaire d’élucider ces mécanismes, afin d’évaluer l’efficacité d’un traitement par thérapie génique en regard de la perte de la plasticité neuronale, et pour définir les meilleures conditions de traitement. Pour cela, de nouveaux modèles cellulaires de la maladie ont été créés. Des cellules souches pluripotentes induites ont été générées à partir de fibroblastes de patients, lesquelles ont ensuite été différenciées en une lignée neuronale. Un modèle HeLa a également été créé dans lequel l’expression de shRNAs dirigés contre la a-N-acétylglucosaminidase (NAGLU), l’enzyme manquante dans la MPSIIIB, est induite par la tétracycline. Ces modèles ont été isolés avec succès, et présentent les caractéristiques pathologiques fondamentales de la MPSIIIB. L’étude de ces modèles a montré que : I) Les OHS excrétés dans la matrice extracellulaire modifient la perception cellulaire des signaux environnementaux, affectant les voies de signalisation en aval avec des conséquences sur la morphologie du Golgi. II) L’accumulation de vésicules de stockage intracellulaires qui caractérisent les MSLs est due à la surexpression de la protéine cis-golgienne GM130 et aux altérations du Golgi qui en résultent. Ces vésicules sont possiblement des lysosomes anormaux formés dans le Golgi cis et médian qui sont déroutés à une étape précoce de la biogenèse du lysosome, donnant naissance à un compartiment « cul-de-sac ». III) D’autres fonctions cellulaires contrôlées par GM130 sont affectées dont la morphologie du centrosome ou la nucléation des microtubules. Ces données suggèrent de possibles conséquences sur la polarisation et la migration cellulaire, et la neuritogenèse. / Mucopolysaccharidosis type IIIB (MPSIIIB) is a lysosomal storage disease (LSD) characterized by accumulation of heparan sulfate oligosaccharides (HSO), which results in progressive mental retardation, neurodegeneration and premature death in children. The underlying mechanisms are poorly understood. Coming to a better understanding of the pathophysiology of MPSIIIB has become a necessity to assess the efficacy of gene therapy treatment regarding loss of neuronal plasticity, and to define the best conditions for treatment. To address the link between HSO accumulation and downstream pathological events, new cell models of MPSIIIB were created. First, induced pluripotent stem cells (iPSc) were generated from fibroblasts of affected children, followed by differentiation of patient-derived iPSc into a neuronal progeny. Second, a HeLa cell model was created in which expression of shRNAs directed against a-N-acetylglucosaminidase (NAGLU), the deficient enzyme in MPSIIIB, is induced by tetracycline. Success in the isolation of these different models was pointed by the presence of cardinal features of MPSIIIB cell pathology. Studies in these models showed that: I) HSO excreted in the extracellular matrix modifies cell perception of environmental cues, affecting downstream signalling pathways with consequences on the Golgi morphology. II) Accumulation of intracellular storage vesicles, a hallmark of LSDs is due to overexpression of the cis-Golgi protein GM130 and subsequent Golgi alterations. It is likely that these vesicles are abnormal lysosomes formed in the cis- and medial-Golgi which are misrouted at an early step of lysosome biogenesis, giving rise to a dead-end compartment. III) Other cell functions controlled by GM130 are affected, including centrosome morphology and microtubule nucleation. These data point to possible consequences on cell polarization, cell migration and neuritogenesis.
99

Synthèse de mimes de fragments d'héparane sulfate pour les études de relation structure-activité sur un nouveau type d'inhibiteur d'entrée du VIH / Synthesis of Heparan Sulfate mimetics for structure-activity relationship studies on a new type of HIV entry inhibitor able to target directly the virus

Lu, Yunyu 04 October 2016 (has links)
Ce travail de thèse a pour objectif la simplification de la préparation d’un nouveau type d’inhibiteur d’entrée du VIH conçu, synthétisé et validé dans le cadre d’une collaboration entre le laboratoire, l’Institut de Biologie Structurale de Grenoble et l’Institut Pasteur de Paris. Ce prototype est constitué d’un mime fonctionnel de CD4 lié de façon covalente à un fragment dodécasaccharidique d’Héparane Sulfate dont la synthèse est complexe. Nous avons donc proposé de préparer des oligomaltosides sulfatés afin de déterminer si ils pouvaient se comporter comme des mimes d’Héparane Sulfate. Dans un premier temps, nous avons mis au point la synthèse d’un précurseur trisaccharidique oligomérisable à partir de maltotriose, un trisaccharide biosourcé commercial. Au cours de ce travail, nous avons résolu trois points particulièrement délicats : l’allylation de l’extrémité réductrice du maltotriose, l’installation d’un groupement paraméthoxybenzylidène en position O-4ᴵᴵᴵ et O-6ᴵᴵᴵ et la protection sélective des positions O-6ᴵ et O-6ᴵᴵ par un groupement silylé. Les optimisations menées nous ont permis de limiter la formation de produits secondaires, d’augmenter le rendement de chaque étape. La synthèse définitive du trisaccharide oligomérisable comprend 8 étapes, a un bon rendement global de 44 % et peut être menée sans problème à des échelles allant jusqu’à 10 g. Dans un deuxième temps, nous avons étudié les réactions de glycosylation α(1→4) visant à oligomériser la brique maltotrioside : nous avons constaté qu'une activation des donneurs sous forme de N-phényltrifluoroacétimidate (PTFA) est un meilleur choix que sous forme de trichloroacétimidate (TCA). En effet, ces derniers subissent une réaction parasite du réarrangement de l’imidate en trichloroacétamide. Nous avons aussi observé que le groupement benzoyle (Bz) en position O-6ᴵᴵᴵ du donneur est préférable à l’acétyle (Ac) qui est moins stable dans les conditions acides et basiques. Ensuite, nous avons synthétisé différents donneurs PTFA possédant différents groupements protecteurs en position O-6ᴵ (TBDPS, Bn, pNO2Bz, Piv, Ac et Bz). Nos études de glycosylation avec ces différents donneurs nous ont permis de conclure qu'un groupement TBDPS en position O-6ᴵ permet d'obtenir de hauts rendements et une totale stéréosélectivité 1,2-cis dans les réactions de glycosylation et, de plus, est parfaitement indiqué comme groupement protecteur dans les étapes de diversifications ultérieures. Pour finir, nous avons optimisé différents paramètres comme : le promoteur, la température, l’ordre d’addition des réactifs, le type de tamis moléculaire, l’effet de solvant, le rapport donneur/accepteur, la concentration de l’accepteur et l’échelle de la réaction. Les conditions optimisées nous ont permis d’accéder efficacement, avec de bons rendements et une stéréosélectivité α totale, aux hexa, nona et dodecasaccharide protégés ciblés. Dans un troisième temps, nous avons réussi à réaliser les étapes de déprotection et fonctionnalisation des oligomaltosides synthétisés : débenzoylation et désilylation chimiosélective (hexa et nonasaccharide), sulfatations (hexa et nonasaccharides), puis déprotection des groupements protecteurs résiduels (hexasaccharides). La finalisation de ce projet impliquera de sulfater les nonasaccharides et de déprotéger les groupements protecteurs résiduels, puis d'introduire un espaceur fonctionnalisé sur tous les membres de la chimiothèque ainsi obtenue (hexa et nonasaccharides) et enfin de réaliser l'hydrogénolyse finale des groupements benzyles pour conduire aux oligomaltosides sulfatés libres dont les activités biologiques seront déterminées en collaboration avec nos partenaires. / This work aims at simplifying the preparation of a new type of HIV entry inhibitor, conceived, synthesized and validated within a collaboration between our group, the "Institut de Biologie Structurale" (Grenoble) and the Institut Pasteur (Paris). This prototype is composed of a CD4 functional mimetic linked to a dodecasaccharide fragment of Heparan Sulfate, whose synthesis is complex. In order to determine if Heparan Sulfate may be replaced by simpler sulfated oligosaccharides, we decided to prepare a set of sulfated oligomaltosides. To this goal, we first optimized the synthesis of an oligomerizable maltotrioside building block in eight steps and 44% global yield from maltotriose, a commercial and biosourced trisaccharide. In this work, we had to address three major points: the allylation of the reducing end of maltotiose, the introduction of a paramethoxybenzylidene group between positions O-4ᴵᴵᴵ and O-6ᴵᴵᴵ and the selective protection of the remaining primary positions O-6ᴵ and O-6ᴵᴵ by a silylated protecting group. Each step has been optimized to minimize the amount of secondary products and thus to enhance its yield. The resulting synthesis was thus shown to be highly reproducible up to ten grams scale. Then, glycoside acceptors and donors were prepared from the oligomerizable maltotrioside building block and we studied their behaviors in glycosylation reactions. We found that trichloroacetimidate activation led to poor glycosylation yields, due to the competitive formation of trichloroacetamidyl glycoside rearrangement product. Gratifyingly, N-phenyltrifluroacetimidate activation solved the rearrangement problem. We demonstrate that benzoyl group (Bz) at position O-6ᴵᴵᴵ in the donor should be preferred to acetyl (Ac) which is less stable both in acidic or basic conditions. Then, we synthesized various PTFA donors bearing different protecting groups at O-6ᴵ position (TBDPS, Bn, pNO2Bz, Piv, Ac et Bz) in order to study their influence on the yields and stereochemical outcome of the glycosylation reactions. We concluded that TBDPS represent the best compromise for efficient glycosylation and later protecting group manipulation strategies. Then we optimized various reaction parameters: promotor nature, temperature, reagents addition order, molecular sieve type, solvent nature, donor/acceptor ratio, concentrations and scale of the reaction. The optimized conditions allowed efficient access, in high yields and full α stereoselectivity, to the targeted protected hexa, nona and dodecasaccharides. Then we validated the deprotection and functionnalization steps: chimioselective debenzoylation and desilylation (hexa and nonasaccharide), sulfations (hexa and nonasaccharides), the final deprotection of the residual protecting groups (hexasaccharides).
100

Cascades physiopathologiques dans la maladie de Sanfilippo B / Pathophysiological cascades of Sanfilippo B disease

Bruyere, Julie 22 October 2012 (has links)
La mucopolysaccharidose de type IIIB (MPSIIIB), ou maladie de Sanfilippo B, est une maladie de surcharge lysosomale caractérisée par des atteintes neurologiques. Cette maladie génétique rare est causée par la déficience en a-N-acétylglucosaminidase (NAGLU), une enzyme nécessaire pour la dégradation des héparanes sulfates (HS). La dégradation incomplète des HS cause l’accumulation de saccharides d’HS dans les lysosomes et à la surface des cellules. Mais la cascade physiopathologique induite par ces saccharides n’est pour l’instant pas connue. D’une part, ces recherches fournissent des preuves que la communication avec l’environnement des cellules neurales déficientes en NAGLU est altérée. En effet, l’intégrine ß1 et ses effecteurs sont suractivés et recrutés au niveau des plaques d’adhérence dans des astrocytes déficients. Les comportements cellulaires dépendants des intégrines, tels que la polarisation et la migration, sont également altérés. Ces phénotypes sont restaurés par l’apport de l’enzyme déficiente. Cette restauration indique que l’accumulation de saccharides d’HS provoque l’activation de la signalisation des intégrines, et perturbe la polarisation et la migration des cellules neurales. L’ajout de saccharides d’HS purifiés sur des cellules neurales normales confirme que les saccharides d’HS extracellulaires activent des composants des plaques d’adhérence. D’autre part, l’étude d’un modèle cellulaire humain, dont l’expression de NAGLU a été inhibée par shRNA, a montré que l’accumulation de vésicules de stockage caractéristiques de la maladie est causée, entre autre, par une déformation de l’appareil de Golgi et la surexpression de GM130. Ces phénotypes sont également observés dans les neurones atteints. Ils s’accompagnent d’une augmentation de la stabilité et de la nucléation des microtubules, au niveau de l’appareil de Golgi. Les défauts de communication entre la cellule malade et son environnement semblent donc modifier la dynamique et la structure cellulaire. Nous présumons que les mécanismes physiopathologiques déchiffrés en culture sont reliés à la neuropathologie de la MPSIIIB. En perturbant la perception de l’environnement cellulaire, la polarité, la migration, et la pousse neuritique, les saccharides d’HS accumulés dans les tissus cérébraux malades, affectent probablement divers mécanismes clefs de la maturation corticale. / Mucopolysaccharidosis type IIIB (Sanfilippo B disease) is a lysosomal storage disease characterized by severe neurological manifestations in children. This rare monogenic disease is caused by a-N­acetylglucosaminidase (NAGLU) deficiency, a lysosomal hydrolase necessary for heparan sulfate (HS) degradation. This deficiency leads to the accumulation of HS saccharides. Mechanisms mediating HS saccharides deleterious effects on brain cells are not well understood. This research provides evidences that neural cell sensing of environment is altered in MPSIIIB cells. Integrins and focal adhesion components are over-recruited and over-activated in deficient mouse astrocytes. Consistently, integrin-dependant cell behavior such as cell polarization and directed migration were defective in affected astrocytes and neural stem cells. HS saccharide clearance, by NAGLU gene transfer, rescues a normal phenotype suggesting that HS saccharides induce focal adhesion formation. Addition of purified HS saccharides on normal astrocytes confirms that extracellular HS saccharides can activate the recruitment of focal adhesion components and provides an in vitro assay to decipher the saccharide code of HS. Otherwise, investigations performed on HeLa cell model, in which NAGLU expression was inhibited by shRNA, showed that accumulation of intracellular storage vesicles, a hallmark of the disease, is due over expression of a cis-Golgi protein. This affects the Golgi morphology and microtubule nucleation and stability. It seems that alterations of environment cell sensing and downstream signaling also modify the dynamic and the structure of cells. We assume that mechanisms deciphered in cell cultures are related to MPSIIIB neuropathology. By affecting cell perception of environmental cues, cell polarity, cell migration and neurite outgrowth, HS saccharides, which accumulate in brain tissues defective for a HS degradation enzyme, likely affect various processes important for accurate cortical maturation.

Page generated in 0.0599 seconds