• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 17
  • 3
  • 2
  • 1
  • Tagged with
  • 47
  • 47
  • 17
  • 13
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Avalia??o da efici?ncia qu?mica de catalisadores heterog?neos baseados em min?rios e rejeitos de minera??o nas rea??es de transesterifica??o de triacilglicer?is de bio-?leo

Rocha, B?rbara Gon?alves 18 December 2017 (has links)
?rea de concentra??o: Produtos e coprodutos. / Submitted by Jos? Henrique Henrique (jose.neves@ufvjm.edu.br) on 2018-06-22T19:43:47Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) barbara_goncalves_rocha.pdf: 2671242 bytes, checksum: 17dfa18bc6c5622c294695227a582c58 (MD5) / Approved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2018-07-18T12:29:56Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) barbara_goncalves_rocha.pdf: 2671242 bytes, checksum: 17dfa18bc6c5622c294695227a582c58 (MD5) / Made available in DSpace on 2018-07-18T12:29:56Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) barbara_goncalves_rocha.pdf: 2671242 bytes, checksum: 17dfa18bc6c5622c294695227a582c58 (MD5) Previous issue date: 2018 / A diversifica??o da matriz energ?tica, por raz?es econ?micas, ambientais e da pr?pria pol?tica energ?tica das na??es, tem suscitado foco especial nos biocombust?veis, particularmente no bioetanol e no biodiesel. Na ind?stria, o biodiesel (?steres de ?cidos graxos com um ?lcool de cadeia molecular curta) ?, mais comumente, produzido pela transesterifica??o de triacilglicer?is de ?leos vegetais ou gordura animal, com metanol ou etanol, sob cat?lise homog?nea com uma base (KOH ou NaOH). Por representarem alternativas potencialmente mais sustent?veis, dos pontos de vistas econ?micos e ambientais, o presente trabalho foi dedicado a avaliar a efici?ncia qu?mica de catalisadores heterog?neos baseados em materiais de min?rios: (i) de ni?bio, enriquecido em Nb2O5 (Geo.Nb2O5); (ii) de areia monaz?tica (Geo.Mona), uma fonte mineral de terras raras, e (iii) de rejeitos de minera??o de fosfato, ricos em magnetita (Geo.Mag.CMT e Geo.Mag.CMA). Os materiais minerais foram preparados em mistura com componentes ?cidos (H2SO4; HCl ou HF) ou b?sicos (KOH; , KBr, NaOH; CaO; KI; KF ou KCl). As rea??es de transesterifica??o foram conduzidas sob refluxo, com ?leo de soja comercial e metanol, sob a??o dos catalisadores s?lidos. A raz?o molar padr?o ?leo:metanol foi de 1:100, com 10% de catalisador em rela??o ao ?leo, a 60 ?C. Dos testes realizados com os materiais preparados com CaO sint?tico comercial, nas mesmas condi??es, a mistura calcinada a 800 ?C por 4 h rendeu ?steres met?licos sempre acima de 99%; o menor tempo de rea??o (2 h, para completar a transesterifica??o) foi conseguido com o catalisador baseado na Geo.Mona, em rela??o ao Geo.Nb2O5 (5 h), ao Geo.Mag.CMT (3 h) e o Geo.Mag.CMA tamb?m (2 h). Analisou-se o reuso consecutivo do catalisador. Ap?s cada rea??o, o catalisador s?lido era lavado com metanol e seco a 100 oC. O melhor resultado foi obtido com o rejeito magn?tico com CaO calcinados a 200 ?C por 4 h, para o que se conseguiu at? 8 rea??es consecutivas. Nas impregna??es com ?cidos e bases, os melhores resultados foram com a mistura Geo.Nb2O5 e KOH calcinada a 600 ?C, para a qual conseguiu 8 rea??es consecutivas, com rendimento qu?mico em ?steres met?licos de praticamente 100% e tempo reacional de 10 min, no primeiro uso. O efeito catal?tico sin?rgico mais significativo foi conseguido com o catalisador baseado em cada um dos tr?s materiais avaliados em mistura com CaO: nenhum efeito catal?tico significativo na rea??o de transesterifica??o de triacilglcier?is do ?leo foi observado apenas com o material mineral puro calcinado. O CaO puro como catalisador, tamb?m calcinado e usado em rea??o, levou a rendimentos qu?micos pouco acima de 80%. A mistura individual do material mineral com CaO, nas mesmas condi??es de prepara??o anteriores, levaram a rendimentos qu?micos de efetivamente 100%. Os presentes resultados revelam a excepcional potencialidade, dos pontos de vista qu?mico, econ?mico e ambiental, dos catalisadores mistos, dos materiais minerais com CaO, ora avaliados, nos processos de produ??o industrial de biodiesel. / Tese (Doutorado) ? Programa de P?s-gradua??o em Biocombust?veis, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2017. / The diversification of the energy matrix has been drawing special attention to biofuels, especially bioethanol and biodiesel, mainly for economic and environmental reasons and national energy policies. In industry, biodiesel (esters of fatty acids with a short-chain alcohols) is most commonly produced by the transesterification of triacylglycerols in vegetable oils or animal fats with methanol or ethanol using homogeneous catalysis with a base (KOH or NaOH). The present work was devoted to the evaluation of the chemical efficiency of heterogeneous catalysts based on mineral materials: (i) niobium, enriched in Nb2O5 (Geo.Nb2O5); (ii) monazite sand (Geo.Mona), a mineral source of rare earths, and (iii) phosphate mining tailings, rich in magnetite (Geo.Mag.CMT e Geo.Mag.CMA). The mineral materials were prepared in admixture with acidic (H2SO4, HCl or HF) or basic (KOH, KBr, NaOH, CaO, KI, KF or KCl) components. The transesterification reactions were conducted under reflux with commercial soybean oil and methanol in the presence of the solid catalysts. The standard molar ratio of oil:methanol was 1:100, using 10% catalyst relatively to the quantity of oil, at 60 ?C. According to the tests performed with the materials prepared with commercial synthetic CaO under the same conditions, the yield of methyl esters with the mixture calcined at 800 ?C for 4 h was always greater than 99%. The shortest reaction time (2 h to complete the transesterification) was achieved with the Geo.Mona catalyst; the reaction times with Geo.Nb2O5 (5 h), the Geo.Mag.CMT (3 h) and the Geo.Mag.CMA also (2 h) were longer. The consecutive reuse of the catalyst was also verified. After each reaction, the solid catalyst was washed with methanol and dried at 100 ?C. The best result was obtained with the magnetic waste with CaO calcined at 200 ?C for 4 h, with which up to eight consecutive reactions were achieved. On impregnating with acids or bases, the best results are obtained with the Geo.Nb2O5 and KOH mixture calcined at 600 ?C, with which eight consecutive reactions were completed. Virtually 100% yields of methyl esters were obtained in a reaction time of 10 min in the first use. The most significant synergistic catalytic effect was achieved with each of the three minerals mixed with CaO. No significant catalytic effect on the transesterification reaction of triacylglycerols in the oil was observed with the pure calcined minerals. When the calcined CaO is used alone as catalyst, the reaction yielded just over 80%. For the mixture of the individual minerals with CaO under the same preparation conditions described above, the transesterification reaction led to virtually 100% yields. The present results reveal an outstanding potential regarding the chemical, economic and environmental aspects of the mixed catalysts (the mineral material with CaO) for chemical processes leading to the industrial production of biodiesel.
22

Produção e caracterização de um biocatalisador heterogêneo para ser utilizado em aplicações industriais

Rodrigues, Roberta da Silva Bussamara January 2009 (has links)
Nesse trabalho foram produzidas lipases da levedura Pseudozyma hubeiensis (HB85A) em reator de 14 L. Após produção da enzima, a lipase foi imobilizada por adsorção em suporte hidrofóbico por processo contínuo em reator de leito fixo. As melhores condições de imobilização foram: tempo de imobilização de 2 h e 29 min., pH de 4,76 e quantidade de enzima livre adicionada por grama de suporte de 1282 U/ g de suporte, sendo que, a máxima atividade da lipase imobilizada obtida foi de 143 U/g de suporte. O sobrenadante contendo lipase e o biocatalisador heterogênio foram caracterizados por planejamento fatorial. A máxima atividade da enzima imobilizada (71 U/g de suporte) foi obtida em pH 6,0 à temperatura de 52 °C. A imobilização da lipase resultou em um aumento na estabilidade dessa enzima em temperaturas altas, pH ácidos e neutros, presença de detergentes não-iônicos e altas concentrações de solventes orgânicos como iso-propanol, metanol e acetona. Foi possível a reutilização da lipase imobilizada por apenas uma vez na reação de hidrólise, havendo uma perda de 72 % da atividade após o primeiro reuso. Analisou-se ainda a estabilidade da lipase livre e imobilizada durante 40 dias de armazenamento a 4 °C. Durante o período de armazenamento, a lipase imobilizada manteve 50 % de sua atividade original e a lipase livre apresentou 80 %. O catalisador heterogêneo foi testado quanto a sua eficácia na produção de biodiesel. A reação de transesterificação foi realizada na ausência de co-solvente utilizando-se como matérias-primas metanol, etanol e iso-propanol e quatro fontes diferentes de triglicerídeo (óleo de soja, óleo de mamona, óleo residual de restaurante e a gordura bovina). A partir dos testes realizados, obteve-se um rendimento máximo quanto à produção de biodiesel de 3,15 % utilizando-se óleo de mamona e iso-propanol como matéria-prima pelo período de 24 h. A produção de biodiesel utilizando diferentes quantidades de lipase imobilizada e também a lipase livre como catalisador foi testada na presença de hexano, iso-propanol e óleo de mamona pelo período de 24 h nas temperaturas de 40, 50 e 60 °C. No entanto, não houve produção de biodiesel nas condições analisadas. / In this work, lipases from yeast Pseudozyma hubeiensis (strain HB85A) were produced in a 14 L reactor. After lipase from yeast P. hubeiensis (strain HB85A) production, the enzyme was immobilized by adsorption in polyestyrene divinylbenzene hydrophobic support in a packet bed column. The best conditions for lipase immobilization were: 2 h and 29 min. immobilizing time, pH 4.76 and rate of free enzyme added per gram of support equal to 1282 U/g. The maximum activity of immobilized lipase was reached of 143 U/g. The lipases of P. hubeiensis (HB85A) supernatant culture and the heterogeneous catalyst were characterized through response surface methodology by factorial design. The maximum activity of immobilized lipase was reached for a support rate of 71 U/g, with pH 6.0 and temperature of 52 °C. It was detected that lipase immobilization increased enzyme stability under high temperatures, neutral and acid pH levels, non-ionic detergent and high concentration of organic solvent like iso-propanol, methanol and acetone. The reuse of immobilized lipase was possible only once for hydrolysis reaction, with activity losses of 72 % after first re-use. Also, it was tested lipase stability in a period of 40 days, under 4 °C storage conditions. During storage period, immobilized lipase kept 50 % of its original activity. Free lipase kept 80 %. After the development of heterogeneous catalyst, its efficiency as catalyst for biodiesel production was analyzed in this study. The transesterification reaction was tested in co-solvent absence using as raw material three differents sources of alcohols (methanol, ethanol and iso-propanol) and four differents triglicerides source (soybean oil, castor oil, waste cooking oil and bovine fat) and as catalystis the immobilized lipase. Based in test results, the maximum biodiesel production yield was 3.15 % using castor oil and methanol as raw material for 24 h. The biodiesel production was also tested with different amount of immobilized lipase and with free lipase as catalystis at the presence of methanol, castor oil and the co-solvent hexane for 24 h at 40, 50 e 60 °C. However there was no biodiesel production at the tested conditions.
23

Produção e caracterização de um biocatalisador heterogêneo para ser utilizado em aplicações industriais

Rodrigues, Roberta da Silva Bussamara January 2009 (has links)
Nesse trabalho foram produzidas lipases da levedura Pseudozyma hubeiensis (HB85A) em reator de 14 L. Após produção da enzima, a lipase foi imobilizada por adsorção em suporte hidrofóbico por processo contínuo em reator de leito fixo. As melhores condições de imobilização foram: tempo de imobilização de 2 h e 29 min., pH de 4,76 e quantidade de enzima livre adicionada por grama de suporte de 1282 U/ g de suporte, sendo que, a máxima atividade da lipase imobilizada obtida foi de 143 U/g de suporte. O sobrenadante contendo lipase e o biocatalisador heterogênio foram caracterizados por planejamento fatorial. A máxima atividade da enzima imobilizada (71 U/g de suporte) foi obtida em pH 6,0 à temperatura de 52 °C. A imobilização da lipase resultou em um aumento na estabilidade dessa enzima em temperaturas altas, pH ácidos e neutros, presença de detergentes não-iônicos e altas concentrações de solventes orgânicos como iso-propanol, metanol e acetona. Foi possível a reutilização da lipase imobilizada por apenas uma vez na reação de hidrólise, havendo uma perda de 72 % da atividade após o primeiro reuso. Analisou-se ainda a estabilidade da lipase livre e imobilizada durante 40 dias de armazenamento a 4 °C. Durante o período de armazenamento, a lipase imobilizada manteve 50 % de sua atividade original e a lipase livre apresentou 80 %. O catalisador heterogêneo foi testado quanto a sua eficácia na produção de biodiesel. A reação de transesterificação foi realizada na ausência de co-solvente utilizando-se como matérias-primas metanol, etanol e iso-propanol e quatro fontes diferentes de triglicerídeo (óleo de soja, óleo de mamona, óleo residual de restaurante e a gordura bovina). A partir dos testes realizados, obteve-se um rendimento máximo quanto à produção de biodiesel de 3,15 % utilizando-se óleo de mamona e iso-propanol como matéria-prima pelo período de 24 h. A produção de biodiesel utilizando diferentes quantidades de lipase imobilizada e também a lipase livre como catalisador foi testada na presença de hexano, iso-propanol e óleo de mamona pelo período de 24 h nas temperaturas de 40, 50 e 60 °C. No entanto, não houve produção de biodiesel nas condições analisadas. / In this work, lipases from yeast Pseudozyma hubeiensis (strain HB85A) were produced in a 14 L reactor. After lipase from yeast P. hubeiensis (strain HB85A) production, the enzyme was immobilized by adsorption in polyestyrene divinylbenzene hydrophobic support in a packet bed column. The best conditions for lipase immobilization were: 2 h and 29 min. immobilizing time, pH 4.76 and rate of free enzyme added per gram of support equal to 1282 U/g. The maximum activity of immobilized lipase was reached of 143 U/g. The lipases of P. hubeiensis (HB85A) supernatant culture and the heterogeneous catalyst were characterized through response surface methodology by factorial design. The maximum activity of immobilized lipase was reached for a support rate of 71 U/g, with pH 6.0 and temperature of 52 °C. It was detected that lipase immobilization increased enzyme stability under high temperatures, neutral and acid pH levels, non-ionic detergent and high concentration of organic solvent like iso-propanol, methanol and acetone. The reuse of immobilized lipase was possible only once for hydrolysis reaction, with activity losses of 72 % after first re-use. Also, it was tested lipase stability in a period of 40 days, under 4 °C storage conditions. During storage period, immobilized lipase kept 50 % of its original activity. Free lipase kept 80 %. After the development of heterogeneous catalyst, its efficiency as catalyst for biodiesel production was analyzed in this study. The transesterification reaction was tested in co-solvent absence using as raw material three differents sources of alcohols (methanol, ethanol and iso-propanol) and four differents triglicerides source (soybean oil, castor oil, waste cooking oil and bovine fat) and as catalystis the immobilized lipase. Based in test results, the maximum biodiesel production yield was 3.15 % using castor oil and methanol as raw material for 24 h. The biodiesel production was also tested with different amount of immobilized lipase and with free lipase as catalystis at the presence of methanol, castor oil and the co-solvent hexane for 24 h at 40, 50 e 60 °C. However there was no biodiesel production at the tested conditions.
24

Transformation de polyols biosourcés par hydrogénolyse en phase aqueuse / Catalytic hydrogenolysis of polyols from renewables in aqueous phase

Rivière, Maxime 18 October 2017 (has links)
Synthétiser de l'éthylène glycol et du propylène glycol à partir de ressources renouvelables est un défi pour une chimie durable. L'hydrogénolyse des alditols (xylitol et sorbitol) issus de la biomasse lignocellulosique en glycols est une possibilité. Cette réaction a été effectuée en milieu aqueux dans des conditions opératoires sévères (200°C ; 60 bar H2) en présence d'un catalyseur hétérogène à base de ruthénium (3%Ru/C) et d'une base homogène (Ca(OH)2). Après avoir fait l'étude détaillée des différents mécanismes intervenant au cours de la réaction (épimérisation, décarbonylation, rétro-aldol, etc.), nous avons déterminé un ratio molaire permettant d'obtenir une activité de 93 h-1 et une forte sélectivité en glycols (55%) et en glycérol (15%). Au-delà de ce ratio, le lactate est produit majoritairement au détriment du propylène glycol. Des catalyseurs bifonctionnels (Ru/oxyde basique/C) ont été développés pour s'affranchir de la base homogène. Le catalyseur 3%Ru/MnO(19%)/C présente une forte activité (384 h-1) pour une sélectivité en glycols et en glycérol de 35% et 17%. Cependant une lixiviation du Mn se produit au cours de la réaction en raison de la production de faibles quantités de carboxylates. L'utilisation d'un solvant binaire H2O : ROH (ROH : MeOH ; EtOH ; 1-PrOH et 1-BuOH) en présence d'un catalyseur Ru/MnO/C, a permis d'augmenter les sélectivités en glycols et glycérol jusqu'à 70%. Cependant le dépôt de coke en surface désactive le catalyseur. Des catalyseurs d'oxydes mixtes à base de Mn (ex. : Ru-MnOX-Al) ont également permis d'augmenter la sélectivité en glycols et glycérol jusqu'à 60% pour une activité de 60 h-1 tout en limitant la lixiviation du Mn / The synthesis of ethylene and propylene glycols from renewables is a great challenge for a green chemistry. The hydrogenolysis of alditols (i.e. xylitol and sorbitol) from lignocellulosic biomass into glycols is an interesting process. This reaction was investigated in aqueous media under harsh operating conditions (200°C; 60 bar H2) over Ru-based heterogeneous catalyst (i.e. 3%Ru/C) and a homogeneous basic promotor (i.e. Ca(OH)2). The kinetic studies revealed that several reactions can occur such as epimerization, decarbonylation or retro-aldol. An optimal molar ratio Rmol(OH-/alditol) of 0.13 led to the highest selectivities to glycols (55%) and glycerol (15%) for an activity of 93 h-1. Beyond this ratio, lactate was principally produced to the detriment of propylene glycol. Bifunctional catalysts (Ru/basic oxide/C) were synthetized in order to perform this reaction in neutral conditions. 3%Ru/MnO(19%)/C showed a high activity (384 h-1) and high selectivities to glycols (37%) and glycerol (17%). However, Mn leaching occurred during the reaction (70%) due to the production of small amount of carboxylates. The use of binary solvent H2O: ROH with ROH: MeOH; EtOH; 1-PrOH and 1-BuOH, enhanced the Ru/MnO/C behavior with selectivities to glycols and glycerol up to 70% in spite of the coke formation on the catalysts. Mn-based mixed oxide catalysts in presence of Ru (i.e. Ru-MnOX-Al) were synthetized and led to high selectivities to glycols and glycerol (60%) with an average activity of 60 h-1. The stability of these catalysts was enhanced by decreasing the substrate concentration
25

Characterizing the Influence of Amino Acids on the Oxidation/Reduction Properties of Transition Metals

January 2014 (has links)
abstract: The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V for a current density of 1 mA/cm<super>2</super> at pH 11. The production of molecular oxygen at a high potential was verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. This Ni species can achieve a current density of 4 mA/cm<super>2</super> that persists for at least 10 hours. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalysis is an electron-proton coupled process. In addition, to investigate the binding of divalent metals to proteins, four peptides were designed and synthesized with carboxylate and histidine ligands. The binding of the metals was characterized by monitoring the metal-induced changes in circular dichroism spectra. Cyclic voltammetry demonstrated that bound copper underwent a Cu(I)/Cu(II) oxidation/reduction change at a potential of approximately 0.32 V in a quasi-reversible process. The relative binding affinity of Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) to the peptides is correlated with the stability constants of the Irving-Williams series for divalent metal ions. A potential application of these complexes of transition metals with amino acids or peptides is in the development of artificial photosynthetic cells. / Dissertation/Thesis / Doctoral Dissertation Biological Design 2014
26

Produção e caracterização de um biocatalisador heterogêneo para ser utilizado em aplicações industriais

Rodrigues, Roberta da Silva Bussamara January 2009 (has links)
Nesse trabalho foram produzidas lipases da levedura Pseudozyma hubeiensis (HB85A) em reator de 14 L. Após produção da enzima, a lipase foi imobilizada por adsorção em suporte hidrofóbico por processo contínuo em reator de leito fixo. As melhores condições de imobilização foram: tempo de imobilização de 2 h e 29 min., pH de 4,76 e quantidade de enzima livre adicionada por grama de suporte de 1282 U/ g de suporte, sendo que, a máxima atividade da lipase imobilizada obtida foi de 143 U/g de suporte. O sobrenadante contendo lipase e o biocatalisador heterogênio foram caracterizados por planejamento fatorial. A máxima atividade da enzima imobilizada (71 U/g de suporte) foi obtida em pH 6,0 à temperatura de 52 °C. A imobilização da lipase resultou em um aumento na estabilidade dessa enzima em temperaturas altas, pH ácidos e neutros, presença de detergentes não-iônicos e altas concentrações de solventes orgânicos como iso-propanol, metanol e acetona. Foi possível a reutilização da lipase imobilizada por apenas uma vez na reação de hidrólise, havendo uma perda de 72 % da atividade após o primeiro reuso. Analisou-se ainda a estabilidade da lipase livre e imobilizada durante 40 dias de armazenamento a 4 °C. Durante o período de armazenamento, a lipase imobilizada manteve 50 % de sua atividade original e a lipase livre apresentou 80 %. O catalisador heterogêneo foi testado quanto a sua eficácia na produção de biodiesel. A reação de transesterificação foi realizada na ausência de co-solvente utilizando-se como matérias-primas metanol, etanol e iso-propanol e quatro fontes diferentes de triglicerídeo (óleo de soja, óleo de mamona, óleo residual de restaurante e a gordura bovina). A partir dos testes realizados, obteve-se um rendimento máximo quanto à produção de biodiesel de 3,15 % utilizando-se óleo de mamona e iso-propanol como matéria-prima pelo período de 24 h. A produção de biodiesel utilizando diferentes quantidades de lipase imobilizada e também a lipase livre como catalisador foi testada na presença de hexano, iso-propanol e óleo de mamona pelo período de 24 h nas temperaturas de 40, 50 e 60 °C. No entanto, não houve produção de biodiesel nas condições analisadas. / In this work, lipases from yeast Pseudozyma hubeiensis (strain HB85A) were produced in a 14 L reactor. After lipase from yeast P. hubeiensis (strain HB85A) production, the enzyme was immobilized by adsorption in polyestyrene divinylbenzene hydrophobic support in a packet bed column. The best conditions for lipase immobilization were: 2 h and 29 min. immobilizing time, pH 4.76 and rate of free enzyme added per gram of support equal to 1282 U/g. The maximum activity of immobilized lipase was reached of 143 U/g. The lipases of P. hubeiensis (HB85A) supernatant culture and the heterogeneous catalyst were characterized through response surface methodology by factorial design. The maximum activity of immobilized lipase was reached for a support rate of 71 U/g, with pH 6.0 and temperature of 52 °C. It was detected that lipase immobilization increased enzyme stability under high temperatures, neutral and acid pH levels, non-ionic detergent and high concentration of organic solvent like iso-propanol, methanol and acetone. The reuse of immobilized lipase was possible only once for hydrolysis reaction, with activity losses of 72 % after first re-use. Also, it was tested lipase stability in a period of 40 days, under 4 °C storage conditions. During storage period, immobilized lipase kept 50 % of its original activity. Free lipase kept 80 %. After the development of heterogeneous catalyst, its efficiency as catalyst for biodiesel production was analyzed in this study. The transesterification reaction was tested in co-solvent absence using as raw material three differents sources of alcohols (methanol, ethanol and iso-propanol) and four differents triglicerides source (soybean oil, castor oil, waste cooking oil and bovine fat) and as catalystis the immobilized lipase. Based in test results, the maximum biodiesel production yield was 3.15 % using castor oil and methanol as raw material for 24 h. The biodiesel production was also tested with different amount of immobilized lipase and with free lipase as catalystis at the presence of methanol, castor oil and the co-solvent hexane for 24 h at 40, 50 e 60 °C. However there was no biodiesel production at the tested conditions.
27

PRODUÇÃO DE BIODIESEL A PARTIR DO ÓLEO VEGETAL DE BABAÇU (Orbignya martiniana) EMPREGANDO CATALISADORES HETEROGÊNEOS COMERCIAIS / PRODUCTION OF BIODIESEL FROM the VEGETAL OIL OF BABASSU (martiniana Orbignya) USING HETEROGENEOUS CATALYST COMMERCIALS

Mouzinho, Angela Maria Correa 17 August 2007 (has links)
Made available in DSpace on 2016-08-19T12:56:29Z (GMT). No. of bitstreams: 1 Angela Maria Correia Mouzinho.pdf: 3152722 bytes, checksum: ff51c13257db3dc1050251928a30a970 (MD5) Previous issue date: 2007-08-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nowadays, the biodiesel production is made, mainly, for the basic catalytic route homogeneous using as catalysts KOH and NaOH. However, this route presents some disadvantages, such as: esters saponification and difficult removal of the catalyst. Otherwise, the heterogeneous route catalytic avoids the inconveniences of the homogeneous catalysis, reducing the amount of aqueous effluents generated in the process and the utilization again of the catalysts. The present work had as objective to select commercials heterogeneous catalysts and to evaluate the catalytic activity of them in the transesterificação reaction of the babassu oil with methanol. In this work, were used carbonatos (Li2CO3, CaCO3), oxides (CaO, MgO, La2O3, Al2O3, SiO2, ZnO) and bases (Ba(OH)2 mono and octahidratado) and clays (bentonita and sea calcium). The catalytics tests were monitored using the Thin Layer Chromatography. The biodiesel obtained was analyzed physical-chemically and characterized by Gas Chromatography and Infra red. The selected catalyst the Ba(OH)2 mono and octahidratado was characterized by the techniques of the Infra red, Optical Microscopy, DRX, solubility and melting point. The results showed that the catalysts CaO, MgO, La2O3, Li2CO3, Al2O3, SiO2, ZnO, CaCO3, pure clay of sea calcium, sodic and pure bentonita presented low catalytic activity for biodiesel production. On the other hand, the catalysts CaO, MgO, sodic bentonita clay and the Ba(OH)2 mono and octahidratado were active to the biodiesel obtaining presenting conversion above 90 %. It was verified that the Ba(OH)2 presented good results in relation to the other catalysers due its complexity of interaction with alcohol molecules in the reaction, what favored a good catalytic activity and selectivity for the production of biodiesel. The reaction transesterification with the Ba(OH)2 monohidratado was evaluated statistically by a factorial planning 24 with central points, varying the time of reaction of 1 - 3 hours, the catalyst concentration 0,2 - 1,0 %, ratio molar alcohol: oil between 6 and 12:1, temperature among 80 160 ºC using as answers the yield of the biodiesel in mass and the esters content. The best conditions for the yield in mass were: temperature of 80 ºC, 3 hours reaction time, ratio molar alcohol: oil 12:1 and concentration of the catalyst Ba(OH)2 monohidratado activated 0,2 %. The factorial planning showed that the variation of the factors didn't have significant influence in the conversion of the esters. / Atualmente, a produção de biodiesel é feita, principalmente, pela rota catalítica básica homogênea empregando como catalisadores KOH e NaOH. No entanto, essa rota apresenta algumas desvantagens, tais como: a saponificação dos ésteres e a dificuldade de remoção do catalisador. Por outro lado, a rota catalítica heterogênea evita os inconvenientes da catálise homogênea, reduzindo a quantidade de efluentes aquosos gerados no processo e a reutilização dos catalisadores. O presente trabalho teve como objetivo selecionar catalisadores heterogêneos comerciais e avaliar a atividade catalítica na reação de transesterificação do óleo de babaçu com metanol. Neste trabalho, foram empregados carbonatos (Li2CO3, CaCO3), óxidos (CaO, MgO, La2O3, Al2O3, SiO2, ZnO), bases (Ba(OH)2 mono e octahidratado) e as argilas (bentonita e cálcio marinho). Os testes catalíticos foram acompanhados usando a Cromatografia de Camada Fina. O biodiesel obtido foi analisado físico-quimicamente e caracterizado por cromatografia gasosa e IV. O catalisador selecionado o Ba(OH)2 mono e octahidratado foi caracterizado pelas técnicas do IV, Microscopia Óptica, DRX, solubilidade e ponto de fusão. Os resultados mostraram que os catalisadores La2O3, Li2CO3, Al2O3, SiO2, ZnO, CaCO3, Argila cálcio marinho puro e sódico e a bentonita pura apresentaram baixa atividade catalítica para produção de biodiesel. Por sua vez, os catalisadores CaO, MgO, Argila bentonita sódica e o Ba(OH)2 mono e octahidratado foram ativos para o biodiesel apresentando conversão acima de 90 %. Foi verificado que o Ba(OH)2 apresentou bons resultados em relação aos outros catalisadores devido a sua complexidade de interação com as moléculas de álcool na reação que favoreceu uma boa atividade catalítica e seletividade para a produção de biodiesel. A reação de transesterificação utilizando o Ba(OH)2 monohidratado foi avaliada estatisticamente por um planejamento fatorial 24 com pontos centrais, variando o tempo de reação de 1 3 horas, a concentração de catalisador 0,2 1,0 %, razão molar álcool: óleo entre 6 e 12:1, temperatura entre 80 160 ºC usando como respostas o rendimento do biodiesel em massa e o teor de ésteres. As melhores condições para o rendimento em massa foram: temperatura de 80 ºC, tempo de reação 3 horas, razão molar álcool: óleo 12:1 e concentração do catalisador Ba(OH)2 monohidratado ativado 0,2 %. O planejamento fatorial mostrou que a variação dos fatores não teve influência significativa na conversão dos ésteres.
28

OBTENÇÃO DE CATALISADORES HETEROGÊNEOS PARA REAÇÃO DE TRANSESTERIFICAÇÃO / HETEROGENEOUS CATALYSTS FOR OBTAINING TRANSESTERIFICATION REACTION

Tavares, Mauro Henrique Almeida 17 September 2010 (has links)
Made available in DSpace on 2016-08-19T12:56:34Z (GMT). No. of bitstreams: 1 MAURO_ HENRIQUE_ ALMEIDA _TAVARES.pdf: 1907291 bytes, checksum: 282d3701bcf431037d315ec5b053395e (MD5) Previous issue date: 2010-09-17 / The biodiesel is produced mainly via homogeneous catalysis, however this process presents some disadvantages such as saponification of esters and the difficulty of separating the catalyst of the formed products. In this work ceramic catalysts were prepared from the application of the surface coating, nanometrics, BaO, CaO and MgO in commercial alumina, in order to improve the catalytic activity in the transesterification reaction, mainly triglycerides. The catalysts were obtained from the surface modification of alumina using a combined technique between sol-gel and polymeric precursors. The obtained catalysts were characterized by Infrared Spectroscopy techniques with Fourier Transform, Scanning Electron Microscopy, Electronic, Optical Microscopy, X-rays Diffraction and Analysis of gas adsorption. The coating in nanometric was observed in only a few particles of support. It was observed that the characteristics of support are essential to obtaining the catalysts for the reaction transesterification of babassu oil, as regards the conversion and processing. The catalysts of alumina with BaO, CaO and MgO showed catalytic for the production of biodiesel. However, with 5 % catalyst in reaction to oil, all catalysts have income above 90 %. Thus, the catalysts were effective for the transesterification of babassu oil for the production of biodiesel. / O biodiesel é obtido principalmente via catálise homogênea, entretanto esse processo apresenta algumas desvantagens como saponificação dos ésteres e a dificuldade de separação do catalisador dos produtos formados. Neste trabalho, foram preparados catalisadores cerâmicos a partir da aplicação do revestimento superficial, em escala nanométrica, de BaO, CaO e MgO em alumina comercial, na perspectiva de melhorar a atividade catalítica desses materiais na reação de transesterificação, principalmente de triglicerídeos. Os catalisadores foram obtidos a partir da modificação da superfície da alumina usando-se uma técnica combinada entre sol-gel e precursores poliméricos. Os catalisadores obtidos foram caracterizados pelas técnicas de Espectroscopia de Infravermelho com Transformada de Fourier, Microscopia Eletrônica de Varredura, Microscopia Óptica, Difração de raios X e Análise de adsorção de gás. O revestimento superficial em escala nanométrica foi observado somente em algumas partículas do suporte. Observou-se que as características do suporte são fundamentais para a obtenção dos catalisadores para a reação de transesterificação de óleo de babaçu, no que diz respeito à conversão e processamento. Os catalisadores de alumina com BaO, CaO e MgO apresentaram atividade catalítica para produção de biodiesel. Em pequenas quantidades, o catalisador com bário apresentou melhor conversão de óleo em biodiesel. Porém, com 5 % de catalisador em relação ao óleo, todos os catalisadores apresentaram rendimento acima de 90 %. Desta forma, esses catalisadores mostraram-se eficientes para reação de transesterificação de óleo de babaçu para produção de biodiesel.
29

Synthèses et applications catalytiques de nanoparticules d’élements de transition / Synthesis and Catalytic Applications of the Transition Elements Nanoparticles

Fu, Fangyu 13 November 2019 (has links)
La catalyse constitue un élément clé en synthèse chimique et la recherche actuelle tend à rendre les procédés catalytiques plus propres dans le contexte de la chimie verte. Dans cet esprit, cette thèse a impliqué la recherche de catalyseurs nanoparticulaires utilisés en milieu aqueux, sans ligand toxique et en très faible quantité. La synthèse des nanoparticules (NPs) catalytiques a utilisé des ions des éléments de transition de la droite du tableau périodique et des réducteurs capables de réduire rapidement ces cations en atomes de degré d’oxydation nul s’agrégeant en petites NPs métalliques très actives en catalyse. Les réducteurs choisis ont été des composés réservoirs d’électron organique (naphthyl sodium) ou organométalliques (complexes sandwichs à 19 électrons de valence du fer tel que [Fe(I)Cp*(ŋ6-C6Me6)] ou du cobalt tel que [Co(II)Cp*2], (Cp* = ŋ5-C5Me5)). Les supports limitant l’agrégation des NPs métalliques ont été le solvant (polyéthylène glycol, 1ère partie de la thèse), les cations des réservoirs d’électron organométalliques (2ème partie de la thèse) ou un réseau zéolitique imidazolate (MOF de type ZIF-8, 3ème partie de la thèse). Au lieu d’un cation métallique, il a aussi été possible d’utiliser un cluster tel que [Au25(SR)18] (R = CH2CH2Ph) comme précurseur, auquel cas la réduction peut se limiter à un simple transfer d’électron produisant un cluster anionique stabilisé par le contre-cation sandwich encombré du réservoir d’électron. Les petites NPs ainsi stabilisées se sont avérées d’excellents catalyseurs “verts” de plusieurs réactions de couplage C-C ou C-N et de production d’hydrogène par hydrolyse d’hydrures métalliques en milieu aqueux dans des conditions très douces. Cette dernière réaction a été efficacement catalysée par des NPs bimétalliques Ni2Pt NP@ZIF-8 avec une synergie spectaculaire entre les deux métaux. / Catalysis is a key element in chemical synthesis, and current research is focusing on making catalytic processes cleaner in the context of green chemistry. In this spirit, this thesis involves the research of nanoparticle (NP) catalysts used in aqueous medium, without toxic ligand and in very small quantities toward a variety of useful processes. The synthesis of the catalytic NPs used cations of the transition elements of the right of the periodic table and of reducing agents capable of rapidly reducing these cations to atoms of zero oxidation state aggregating into small catalytically active metal NPs. The chosen reducing agents were organic (naphthyl sodium) or organometallic (19-electron) sandwich complexes of iron such as [Fe(I)Cp*(ŋ6-C6Me6)] or cobalt such as [Co(II)Cp*2], (Cp* = ŋ5-C5Me5)) used as electron reservoirs. The supports limiting the aggregation of the metal NPs were the solvent (polyethylene glycol, first part of the thesis), the cations of the organometallic electron reservoirs (2nd part of the thesis) or a zeolitic imidazolate framework (MOF of ZIF-8 type, 3rd part of the thesis). Instead of a metal cation, it has also been possible to use a cluster such as [Au25(SR) 18] (R = CH2CH2Ph) as a precursor, in which case the reduction was limited to a simple electron transfer producing an anionic cluster stabilized by the congested sandwich counter cation of the electron reservoir. The small NPs thus stabilized proved to be excellent "green" catalysts for several C-C or C-N reactions and hydrogen production by hydrolysis of metal hydrides in an aqueous medium under very mild conditions. This latter reaction was efficiently catalyzed by Ni2Pt@ZIF-8 bimetallic NPs with a spectacular synergy between the two metals.
30

Biodiesel production and evaluation of heterogeneous catalyst using South African oil producing trees

Modiba, Edward Magoma 01 1900 (has links)
M. Tech. (Department of Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / This study presents the use of sodium methoxide as a homogeneous catalyst and impregnated Perlite (potassium hydroxide/perlite) as heterogeneous catalyst for production of biodiesel using Baobab and Marula oil respectively. One factor at a time experimental design was used to study the effect of temperature, time, amount of catalyst and methanol to oil ratio on the transesterification of baobab oil using sodium methoxide as a catalyst. Response surface methodology was used to study the effect of temperature, time, amount of catalyst and methanol to oil ratio on the transesterification of marula oil using perlite as a catalyst. Biodiesel yield produced using sodium methoxide and baobab oil was 96% at 1 hr reaction time, 30 wt.% methanol to oil ratio, 1 gram of catalyst and 60°C reaction conditions. Biodiesel yield produced using perlite and marula oil was 91.38% at 3.55 hr reaction time, 29.86 wt.% methanol to oil ratio, 3.46 grams of catalyst and 70.41°C reaction conditions. Perlite catalyst was reusable for transesterification of marula oil while sodium methoxide was not reusable for transesterification of baobab oil. Baobab and Marula biodiesel fuel properties are comparable to American Society for Testing Materials standard (ASTM).

Page generated in 0.0652 seconds