Spelling suggestions: "subject:"hexadecane"" "subject:"nhexadecane""
11 |
Avaliação do potencial de transformação de compostos tóxicos por isolados de Gordonia paraffinivorans e Gordonia sihwensis provenientes de compostagem / Evaluation of the potential for transformation of toxic compounds by Gordonia paraffinivorans and Gordonia sihwensis isolated from compostingBraga, Stefania Pegorin 08 June 2018 (has links)
A biorremediação é uma metodologia eficiente na recuperação de ambientes poluídos. Ela emprega organismos capazes de degradar compostos tóxicos transformando-os em substâncias menos agressoras. Dentre os microrganismos que são utilizados para este fim, o gênero Gordonia tem se destacado bastante devido a sua grande versatilidade metabólica, o que permite a utilização de substratos complexos e tóxicos como fonte energética, eliminando-os do meio ambiente. O sequenciamento e a análise dos genomas de dois isolados de G. paraffinivorans (MTZ041 e 052) e de um isolado de G. sihwensis (MTZ096), provenientes da compostagem, demonstrou que esses microrganismos possuem os elementos genéticos que conferem a habilidade de degradar hidrocarbonetos, borracha sintética e borracha natural. Para comprovar a capacidade desses isolados em utilizar estas diferentes fontes de carbono, foram realizados ensaios contendo um indicador de óxido redução (2,6 DCPIP), cinéticas de crescimento, análises químicas (Cromatografia Gasosa, CG), qPCR e microscopia eletrônica de varredura (MEV). Os três isolados usados neste trabalho foram capazes de utilizar hidrocarbonetos como fonte única de carbono. Os resultados dos ensaios cromatográficos demonstram que G. paraffinivorans MTZ041 consumiu 28,92% do hexadecano presente no meio, contra 69,80% consumido por G. sihwensis MTZ096 ao longo de 168 horas. As curvas de crescimento também demonstraram que a biomassa acumulada por G. sihwensis MTZ096 é 3,3 vezes maior do que a biomassa de G. paraffinivorans MTZ041 para o tratamento com hexadecano, totalizando 3,68 mg/ml e 1,11 mg/ml, respectivamente. Conforme esperado, mediante estas observações, a presença de hexadecano como fonte única de carbono no meio de cultivo, levou ao aumento da expressão dos genes responsáveis pela degradação de hidrocarbonetos. Para o sistema CYP 153, os genes FER, CYP 153 e FER RED tiveram sua expressão aumentada 750, 232 e 110 vezes, respectivamente. Já os genes alk B, rub A3, rub A4, rub B e alk U do sistema alcano hidroxilase tiveram sua expressão aumentada em 248, 1576, 1296, 6,6 e 20 vezes respectivamente. Estes resultados confirmam dados prévios da literatura de que os isolados de Gordonia tem grande potencial para biotransformação de hidrocarbonetos. Em relação à capacidade de assimilação de borracha sintética e natural, as análises in silico demonstraram que somente os isolados da espécie G. paraffinivorans possuem o gene Lcp (Látex Clearing Protein) responsável pelo primeiro passo da assimilação destes substratos. As curvas de crescimento em borracha natural e sintética como fonte única de carbono foram realizadas ao longo de 11 semanas e demonstram a capacidade destes substratos em suportar o crescimento robusto. Durante 80 dias, foi possível evidenciar a presença de bacilos e a formação de biofilme na borracha sintética e natural por meio de MEV. Este é o primeiro relato na literatura de G. paraffinivorans assimiladora de borracha e a terceira espécie do gênero Gordonia com esta habilidade metabólica. Dada a grande complexidade deste substrato e a escassez de microrganismos com esta capacidade, a descrição e a caracterização deste isolado são de grande originalidade e relevância biotecnológica. / Bioremediation is an efficient methodology on recovery of polluted environments. It acts employing microorganisms capable of degrading toxic compounds into less aggressive substances. Among the microorganisms used in bioremediation, the genus Gordonia has stood out due to its great metabolic versatility, which allows the use of complex toxic substrates as energy source, eliminating them from the environment. Sequencing and analysis of the genomes of two isolates of G. paraffinivorans (MTZ041 and 052) and an isolate of G. sihwensis (MTZ096) from composting, demonstrated that these microorganisms possess the genetic factors that confer the ability to degrade hydrocarbons, synthetic and natural rubber. To prove the capacity of growth of the isolates in these carbon sources, growth tests were carried out containing an oxide reduction indicator (2,6 DCPIP), kinetics growth, chemical analysis (gas chromatography, CG), qPCR and scanning electron microscopy (SEM). The three isolates used in this study were able to utilize hydrocarbons as sole carbon source. The results of the chromatographic assays show that G. paraffinivorans MTZ041 consumed 28.92% of the hexadecane present in the medium, against 69.80% consumed by G. sihwensis MTZ096 over 168 hours. The growth curves also showed that the biomass accumulated by G. sihwensis MTZ096 is 3.3 times higher than the biomass of G. paraffinivorans MTZ041 for the hexadecane treatment, resulting in 3.68 mg/ml and 1.11 mg/ml, respectively. As expected by these observations, the presence of hexadecane as carbon source in the medium led to an increased expression of the genes responsible for the degradation of hydrocarbons. For the CYP 153 System, genes FER, CYP 153 and FER RED had an increased expression of 750, 232 e 110 times, respectively. As for the Alkane Hydroxylase System, genes alk B, rub A3, rub A4, rub B and alk U had an increased expression of 248, 1576, 1296, 6,6 e 20 times, respectively. These results confirm previous data from the literature that Gordonia isolates have a great potential for biotransformation of hydrocarbons. Regarding assimilation of synthetic rubber and natural, in silico analysis demonstrated that only the isolates from the species G. paraffinivorans have the Lcp gene (latex Clearing Protein) responsible for the first step of the assimilation of these substrates. The growth curves in natural and synthetic rubber as carbon source were conducted over 11 weeks and demonstrate the ability of these substrates to support the robust growth of G. paraffinivorans . During 80 days, it was possible to evidence the presence of bacilli and the formation of biofilms on natural and synthetic rubber by SEM. This is the first report in the literature of G. paraffinivorans as a rubber degrader and the third species of the genus Gordonia with this ability. Given the complexity of this substrate and the shortage of micro-organisms with this capacity the description and characterization of this isolate is of great originality and biotechnological relevance.
|
12 |
Self-Alignment of Silicon Microparts on a Hexadecane-Water Interface by Surface TensionLiberti, Caroline Elizabeth 01 January 2011 (has links)
Mechanical assembly of systems and structures on the micro-scale can be inefficient as pthesiss of sub-millimeter dimensions are difficult to manipulate. Cutting edge manufacturing methods implement self-assembly as an approach to ordering micro and nano-sized parts into a desired arrangement. This thesis studies a technique utilizing surface tension as a method of actuating microparts on a liquid-liquid interface via lateral capillary interactions. Preliminary experimentation is conducted to investigate the feasibility of developing a new method for self-alignment of microparts by observing the influence of interfacial geometry on the movement of silicon tiles along a hexadecane-water interface. Different surface geometries are created by implementing vertical rods of different wetting properties that alter the curvature of the interface. Results demonstrate that the microparts attain an equilibrium separation distance from the vertical rods. It is indicated that this equilibrium distance is determined by the dimensions of the micropart and the curvature of the interface. With further investigation, these results may be used to cultivate a method for self-alignment of microparts into rings of a desired radius.
|
13 |
Synthèses, caractérisations et performances catalytiques des zéolithes nanoéponge de type structurale *BEA / Synthesis, characterization and catalytic performance of *BEA-type zeolites nanospongeAstafan, Amir 30 May 2016 (has links)
La méthode à privilégier pour améliorer dans les zéolithes la diffusion des réactifs, des intermédiaires réactionnels et des produits est de raccourcir la longueur du chemin diffusionnel, c'est-à-dire de diminuer la taille des cristaux. La croissance des cristallites est fonction de la composition du gel de synthèse, du temps de cristallisation, de la température, etc. La maîtrise de cette croissance permet d'obtenir un large éventail de taille pouvant aller de plusieurs micromètres à seulement quelques dizaines de nanomètres. Dorénavant, il est possible de limiter le chemin diffusionnel à seulement 3 mailles élémentaires en inhibant lors de la synthèse hydrothermale la croissance des cristaux dans une direction privilégiée. Pour cela l'utilisation d'agent structurant organique très particulier de type géminé s'avère indispensable et donne dans le cas de la zéolithe de type *BEA un matériau hiérarchisé avec des cristaux zéolithiques de 4 nm d'épaisseur séparés par des mésopores structurés et réguliers. La morphologie de ce matériau ressemble à une éponge de mer.<br>Deux réactions modèles, hydroisomérisation du n-héxadécane et transformation de l'éthanol en hydrocarbures, démontrent que la diffusion des réactifs et des produits sont optimisées dans les nanoéponges de bêta. La stabilité et la sélectivité du catalyseur se trouvent alors améliorées au détriment, étonnamment, de l'activité. Cela vient du fait que l'extrême diminution de l'épaisseur des cristallites conduit à une augmentation du nombre d'aluminium en bouche de pores qui sont, bien que très accessibles, incapables de catalyser les réactions d'isomérisation et de craquage. Les aluminium proche de la surface externe, contrairement à ceux situés au cœur du cristal ne bénéficient pas des effets longues distances ce qui les rend moins forts. / The method to ameliorate the diffusion of reactants, reaction intermediates, and products inside the zeolite is by shortening the diffusion path length, i.e., crystals size. The growth of the crystals is a function of gel composition synthesis, crystallization time, temperature, etc. The mastering of this growth allows to obtain a wide range of the size which ranges from several micrometers to a few tens of nanometers. It is possible now to limit the diffusion path to only three unit cells by inhibiting the crystals' growth in one direction during the hydrothermal synthesis. For that, the use of a peculiar organic surfactant geminate is indispensable, it gives a hierarchical material with zeolitic crystals of 4 nm thickness separated by structured and regular mesopores in the case of *BEA type zeolite. The morphology of this material resembles a sea sponge.<br>Two reaction models, n-hexadecane hydroisomerization and ethanol transformation to hydrocarbons, demonstrate that the reactants and the products diffusion was optimized in the beta nanosponges. Surprisingly the catalyst stability and selectivity were improved instead of activity. In fact this is due to the extreme reducing of the zeolite crystals’ thickness that leads to increase the aluminum number in the pore mouth, which although very accessible, but incapable to catalyze the isomerization and cracking reactions. The aluminums near the external surface, in contrary to those in the crystal heart, do not benefit from the long distance effects, which makes them weaker.
|
14 |
Blown Away: The Shedding and Oscillation of Sessile Drops by Cross Flowing AirMilne, Andrew J. B. Unknown Date
No description available.
|
15 |
Étude de l'oxydation en phase gazeuse de composants des gazoles et des biocarburants diesel / Study of the oxidation of components of diesel and biodiesel fuels in gaseous phaseHakka, Mohammed Hichem 27 January 2010 (has links)
En raison de la complexité de leur composition, l’étude de l’oxydation des gazoles et des carburants biodiesel nécessite de choisir des molécules modèles représentant ces mélanges. Dans ce contexte nous avons sélectionné deux molécules pouvant représenter les gazoles : le n-décane, souvent considéré comme molécule modèle des paraffines contenues dans les gazoles, et le n-hexadécane, molécule de référence pour l’estimation de l’indice cétane, ainsi que deux molécules représentant les carburants biodiesel : le palmitate de méthyle (C17H34O2, ester méthylique saturé) et l’oléate de méthyle (C19H36O2, ester méthylique insaturé). L’étude de l’oxydation de ces molécules a été menée en réacteur auto-agité par jets gazeux, à une richesse de 1, des températures comprises entre 550 et 1100 K, à pression atmosphérique et à un temps de passage constant de 1,5 s. La formation d’un nombre important d’espèces a été observée parmi lesquelles figurent des oléfines, des diènes, des esters méthyliques insaturés, des éthers cycliques avec différentes tailles de cycle, des cétones et des aldéhydes. Grâce à deux nouvelles versions du logiciel EXGAS, des mécanismes cinétiques détaillés de l’oxydation des molécules étudiées ont été générés et validés par comparaison avec les résultats expérimentaux. Enfin, une comparaison de la réactivité du n-décane, du n-hexadécane, du palmitate de méthyle et de l’oléate de méthyle et des quantités de produits formées (dont certains polluants) a été effectuée / Because of the complexity of their compositions, the study of the oxidation of diesel and biodiesel fuels requires choosing model molecules (surrogates) representing the real mixtures. In this context, we have selected two molecules to represent the diesel fuel: n-decane, usually considered as model molecule of paraffin contained in diesel fuel, and n-hexadecane, molecule of reference for the estimation of the cetane number, and two molecules representing biodiesel fuel: methyl palmitate (C17H34O2, a saturated methyl ester) and methyl oleate (C19H36O2, an unsaturated methyl ester). The study of oxidation of these molecules has been conducted in a jet-stirred reactor, with an equivalence ratio of 1, temperatures between 550 and 1100 K, at atmospheric pressure and for a constant residence time of 1.5 sec. The formation of a large number of species has been observed which includes olefins, dienes, unsaturated methyl esters, cyclic ethers with different size of ring, ketones and aldehydes. Using two new versions of EXGAS software, detailed kinetic mechanisms for the oxidation of the studied molecules were generated and validated by comparaison with experiemental results. Finally, a comparison of the reactivity of n-decane, n-hexadecane, methyl palmitate and methyl oleate and amounts of formed products (including some pollutants) has been performed
|
Page generated in 0.0506 seconds