Spelling suggestions: "subject:"ffq"" "subject:"hfq""
11 |
Investigating the Role of the RNA-Binding Protein Hfq in Staphylococcus aureusSorensen, Hailee M. 18 May 2021 (has links)
No description available.
|
12 |
Rôle de la protéine chaperonne Hfq dans la réponse des ARN messagers à la régulation par les petits ARN / Anatomy of target mRNA recognition by small regulatory RNAs : the role of HfqGuillemardet, Benoit 23 September 2016 (has links)
Parmi les régulateurs nucléiques, les petits ARN régulateurs sont un moyen rapide d’adaptation. On les retrouve dans tous les domaines du vivant. Chez les bactéries, l’action d’un grand nombre d’entre eux dépend de la protéine chaperonne d’ARN Hfq. Leur mode d’action consiste à d’apparier directement à l’ARNm cible par complémentarité imparfaite de séquence. Il en résulte une régulation positive ou négative, de la traduction et/ou de la stabilité de l’ARNm cible.Au cours de la première partie cette thèse, nous avons essayé de caractériser la régulation des ARNm par les petits ARN régulateurs. Pour ce faire, nous avons étudiés les différents composants de cette régulation et nous avons pu montrer que les sites de fixation à la protéine Hfq sur les ARN devaient être compatibles pour obtenir une régulation optimale des ARNm par les petits ARN régulateurs.Lors de la seconde partie de la thèse, nous avons pu identifier un nouveau type de régulation des ARNm par les petits ARN régulateurs : la polarité transcriptionnelle. Nous avons pu montrer que la fixation du petit ARN ChiX sur la région 5’UTR de l’ARNm chiPQ entrainer l’inhibition de la traduction de chiP mais également une terminaison prématurée rho-dépendante de la transcription de l’ARNm.Nous avons par la suite cherché à savoir si ce type de régulation pouvait se retrouver dans la régulation d’autre ARNm comme l’opéron dppABCDF et l’opéron pgaABCD. En parallèle de ces études, nous avons également essayé de caractérisé la terminaison Rho-dépendante entre S. Typhimurium et E.coli au sein de l’ARNm chiPQ. / Among the nucleic regulators, small regulatory RNAs are a quick way to adapt. They are found in all areas of life. In bacteria, the action of a large number of them depends on the chaperone protein of Hfq RNA. Their mode of action consists of matching directly to the target mRNA by imperfect complementary sequence. This results in a positive or negative control, translation and/or stability of the target mRNA.During the first part of this thesis, we have tried to characterize the regulation of mRNA by small regulatory RNAs. To do this, we studied the different components of this regulation and we have shown that the binding sites on protein Hfq on RNA should be consistent for optimal regulation of mRNA by small regulatory RNAs.In the second part of the thesis, we identified a new type of mRNA regulation by small RNA regulators: transcriptional polarity. We could show that the fixing of small RNA ChiX on the 5 'UTR region of the mRNA chiPQ cause inhibition of translation of chiP but also a Rho-dependent premature termination of mRNA transcription.We subsequently investigated whether this type of regulation could be in the control of other mRNAs as dppABCDF’s operon and pgaABCD’s operon. In parallel with these studies, we have also tried characterized Rho-dependent termination between S. Typhimurium and E. coli in mRNA chiPQ.
|
13 |
Identification d'ARN régulateurs bactériens : développement d’une méthode de détection et étude de la régulation post-transcriptionnelle chez la bactérie phytopathogène Dickeya dadantii / Identifying bacterial small RNAs : development of a detection method and post-transcriptional regulation in the plant pathogen Dickeya dadantiiLeonard, Simon 05 December 2018 (has links)
Les organismes bactériens sont en contact direct avec leur environnement et doivent donc constamment s’acclimater aux variations de celui-ci. Pour cela, plusieurs leviers de régulations peuvent être actionnés. Récemment, la régulation post-transcriptionnelle par les ARN régulateurs a été proposée comme un mécanisme de régulation rapide et peu coûteux pour la cellule. Chez le phytopathogène Dickeya dadantii, la régulation de la virulence a quasi exclusivement été étudiée au niveau transcriptionnel et l’implication des ARN régulateurs dans la virulence reste très peu connue. Pour cela, nous avons tout d’abord étudié le rôle des chaperons à ARN dans la pathogénie de D. dadantii et mis en évidence leur implication dans de nombreux facteurs de virulence comme la production d’enzyme de dégradation de la paroi végétale. Puis, nous avons développé une nouvelle méthode d’identification d’ARN à partir de données RNA-seq. Cette méthode a été développée pour tirer profit des séquençages réalisés en paired-end, permettant de séquencer les deux extrémités d’un transcrit. Son évaluation dans sa capacité à détecter de manière précise des ARN connus a montré une performance supérieure aux méthodes de détection existantes. Enfin, cette nouvelle méthode a été appliquée sur des données de séquençage de petits transcrits. Cette analyse nous a permis d’identifier plus d’un millier d’ARN régulateurs potentiels, dont plusieurs pourraient être impliqués dans la régulation de la virulence. Ces travaux ont donc permis de mettre en lumière l’existence d’une régulation post-transcriptionnelle chez D. dadantii et de proposer des pistes concernant les acteurs et mécanismes concernés / Bacterial organisms are directly exposed to environmental conditions and have to respond to environmental stress. To do so, several regulation network are known. Recently, post transcriptional regulation with small RNAs was suggested to be a fast and cheap in energy regulation mechanism. In the phytopathogen Dickeya dadantii, investigations on pathogenic process mostly focused on its control by transcriptional regulators. Knowledge of post-transcriptional regulation of the virulence factors is still in its infancy.To this end, we first studied the impact of RNA chaperones in the virulence of D. dadantii and showed that they were involved in the regulation of several virulence factors, like production of cell wall degrading enzyme. Then, we developed a new method to detect sRNAs from paired-end bacterial RNA-seq data. This method take paired end sequencing into account, which allow the sequencing of the both ends of each fragment. A comparative assessment showed that this method outperforms all the existing methods in terms of sRNA detection and boundary precision. Finally, this method was applied to sequencing data. With this analysis, more than one thousand sRNAs has been detected, with the identification of several candidates potentially involved in virulence.Thereby, this work highlight the existence of post-transcriptionnal regulation in D. dadantii and suggest candidates and mechanisms involved in this regulation
|
14 |
Post-transcriptional regulation of acetate metabolism: Coordination with the TCA cycle via a 3 ́ UTR-derived noncoding regulatory RNADe Mets, Francois 17 December 2018 (has links) (PDF)
Bacterial regulatory small RNAs (sRNAs) act as crucial regulators in central carbon metabolism by modulating translation initiation and/or degradation of target mRNAs in metabolic pathways. This work demonstrates that a noncoding sRNA, SdhX, is produced by RNase E-dependent processing from the 3 ́ untranslated region (3 ́ UTR) of an operon encoding three enzymes of the tricarboxylic acid (TCA) cycle. In Escherichia coli, SdhX negatively regulates ackA (encoding an enzyme critical for degradation of the signaling molecule acetyl phosphate) without affecting the downstream pta gene that encodes the enzyme critical for acetyl phosphate synthesis. SdhX abundance is tightly coupled to the transcription signals of the TCA cycle genes but escapes all known post-transcriptional regulation. Therefore, SdhX expression directly correlates with transcriptional input to the TCA cycle, providing an effective mechanism for the cell to link the TCA cycle with acetate metabolism pathways. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
15 |
CopA and CopT: The Perfect RNA CoupleSlagter-Jäger, Jacoba G. January 2003 (has links)
<p>Antisense RNAs regulate gene expression in many bacterial systems. The best characterized examples are from prokaryotic accessory elements such as phages, plasmids and transposons. Many of these antisense RNAs have been identified as plasmid copy number regulators where they regulate the replication frequency of the plasmid by negative feedback. Instability and fast binding kinetics is crucial for the regulatory efficiency of these antisense RNAs. </p><p>In this thesis, the interaction of the cis-encoded antisense RNA CopA with its target CopT was studied in detail using <i>in vivo</i> reporter gene fusion expression and different <i>in vitro </i>methods, such as surface plasmon resonance, fluorescence resonance energy transfer, and gel-shift assays.</p><p>Formation of inhibitory complexes differs from simple hybridization reactions between complementary strands. E.g., the binding pathway of CopA and CopT proceeds through a hierarchical order of steps. It initiates by reversible loop-loop contacts, resulting in a helix nucleus of two or three base pairs. This is followed by rapid unidirectional helix progression into the upper stems, resulting in a four-way helical junction structure. It had been suggested that the loop of CopT carries a putative U-turn, a structure first found in tRNA anticodon loops. We showed that this putative U-turn is one of the structural elements of CopA/CopT required to achieve fast binding kinetics. Furthermore, the hypothetical U-turn structure determines the direction of helix progression when the kissing complex progresses to a four-way helical junction structure. Another structural element in CopT is the helical stem adjacent to the recognition loop. This stem is important to present the recognition loop appropriately to provide a scaffold for the U-turn.</p><p>Furthermore, the role of protein Hfq in the interaction of antisense/target RNA was investigated, since several trans-encoded antisense RNAs had been shown to need this protein to exert their function. In contrast, studies of two cis-encoded antisense RNA systems showed that these antisense RNAs do not rely on Hfq for activity. In this study it was also shown that MicF, a trans-encoded antisense RNA which is dependent on Hfq, is greatly stabilized by this protein.</p>
|
16 |
Functional characterization of the small antisense RNA MicA in Escherichia coliUdekwu, Klas Ifeanyi January 2007 (has links)
<p>The Escherichia coli small RNA (sRNA) MicA was identified recently in a genomewide search for sRNAs. It is encoded between the genes <i>gshA</i> and <i>luxS</i> in E. coli and its close relatives. The function of sRNAs in bacteria is generally believed to be in maintenance of homeostasis via stress-induced modulation of gene expression. Our studies on MicA have been aimed at attributing function(s) to this molecule.</p><p>We carried out high throughput assays aimed at identifying genes that are differentially regulated upon knocking out or overexpressing MicA. Among the protein candidates identified was the outer membrane protein, OmpA. Subsequent analysis allowed us to show this regulation to be antisense in nature with MicA binding within the translation initiation region of <i>ompA</i> mRNA. Furthermore, blocking the ribosome from loading caused a translational decoupling that instigates degradation of the mRNA. The regulation was apparent in early stationary phase and seen to be dependent on the RNA chaperone Hfq. </p><p>We went on to characterize the regulation of MicA, looking at its own transcription. Testing various stress conditions, we were able to identify putative promoter elements that we confirmed using transcriptional fusions. The results showed MicA to be dependent on the extracytoplasmic function ECF sigma E (σ<sup>E</sup>) and could not detect MicA in mutants deleted for this factor.</p><p>Lastly, we identified an additional target for MicA being the adjacently encoded <i>luxS</i> mRNA. The LuxS protein is essential for the synthesis of the quorum sensing AI-2 molecule. Transcription of the <i>luxS </i>mRNA is commences within the <i>gshA</i> gene, on the other side of MicA coding region. We were able to show that MicA interacts with <i>luxS </i>mRNA and is recognized by RNase III which processes this complex leading to a shorter <i>luxS</i> mRNA isoform. The significance of this processing event is as yet undetermined. Our data elucidated a new promoter driving transcription of <i>luxS,</i> and we demonstrated this promoter to be stationary phase responsive.</p><p>In summary, the work presented here characterizes the sRNA MicA as a dual regulatory sRNA molecule, moonlighting between its cis-encoded target and its trans-encoded target. .</p>
|
17 |
CopA and CopT: The Perfect RNA CoupleSlagter-Jäger, Jacoba G. January 2003 (has links)
Antisense RNAs regulate gene expression in many bacterial systems. The best characterized examples are from prokaryotic accessory elements such as phages, plasmids and transposons. Many of these antisense RNAs have been identified as plasmid copy number regulators where they regulate the replication frequency of the plasmid by negative feedback. Instability and fast binding kinetics is crucial for the regulatory efficiency of these antisense RNAs. In this thesis, the interaction of the cis-encoded antisense RNA CopA with its target CopT was studied in detail using in vivo reporter gene fusion expression and different in vitro methods, such as surface plasmon resonance, fluorescence resonance energy transfer, and gel-shift assays. Formation of inhibitory complexes differs from simple hybridization reactions between complementary strands. E.g., the binding pathway of CopA and CopT proceeds through a hierarchical order of steps. It initiates by reversible loop-loop contacts, resulting in a helix nucleus of two or three base pairs. This is followed by rapid unidirectional helix progression into the upper stems, resulting in a four-way helical junction structure. It had been suggested that the loop of CopT carries a putative U-turn, a structure first found in tRNA anticodon loops. We showed that this putative U-turn is one of the structural elements of CopA/CopT required to achieve fast binding kinetics. Furthermore, the hypothetical U-turn structure determines the direction of helix progression when the kissing complex progresses to a four-way helical junction structure. Another structural element in CopT is the helical stem adjacent to the recognition loop. This stem is important to present the recognition loop appropriately to provide a scaffold for the U-turn. Furthermore, the role of protein Hfq in the interaction of antisense/target RNA was investigated, since several trans-encoded antisense RNAs had been shown to need this protein to exert their function. In contrast, studies of two cis-encoded antisense RNA systems showed that these antisense RNAs do not rely on Hfq for activity. In this study it was also shown that MicF, a trans-encoded antisense RNA which is dependent on Hfq, is greatly stabilized by this protein.
|
18 |
Functional characterization of the small antisense RNA MicA in Escherichia coliUdekwu, Klas Ifeanyi January 2007 (has links)
The Escherichia coli small RNA (sRNA) MicA was identified recently in a genomewide search for sRNAs. It is encoded between the genes gshA and luxS in E. coli and its close relatives. The function of sRNAs in bacteria is generally believed to be in maintenance of homeostasis via stress-induced modulation of gene expression. Our studies on MicA have been aimed at attributing function(s) to this molecule. We carried out high throughput assays aimed at identifying genes that are differentially regulated upon knocking out or overexpressing MicA. Among the protein candidates identified was the outer membrane protein, OmpA. Subsequent analysis allowed us to show this regulation to be antisense in nature with MicA binding within the translation initiation region of ompA mRNA. Furthermore, blocking the ribosome from loading caused a translational decoupling that instigates degradation of the mRNA. The regulation was apparent in early stationary phase and seen to be dependent on the RNA chaperone Hfq. We went on to characterize the regulation of MicA, looking at its own transcription. Testing various stress conditions, we were able to identify putative promoter elements that we confirmed using transcriptional fusions. The results showed MicA to be dependent on the extracytoplasmic function ECF sigma E (σE) and could not detect MicA in mutants deleted for this factor. Lastly, we identified an additional target for MicA being the adjacently encoded luxS mRNA. The LuxS protein is essential for the synthesis of the quorum sensing AI-2 molecule. Transcription of the luxS mRNA is commences within the gshA gene, on the other side of MicA coding region. We were able to show that MicA interacts with luxS mRNA and is recognized by RNase III which processes this complex leading to a shorter luxS mRNA isoform. The significance of this processing event is as yet undetermined. Our data elucidated a new promoter driving transcription of luxS, and we demonstrated this promoter to be stationary phase responsive. In summary, the work presented here characterizes the sRNA MicA as a dual regulatory sRNA molecule, moonlighting between its cis-encoded target and its trans-encoded target. .
|
19 |
Identification of new virulence factors in Francisella tularensisForslund, Anna-Lena January 2010 (has links)
Francisella tularensis, the causative agent of tularemia, is a highly virulent bacterium with an infection dose of less than ten bacteria. The ability of a pathogen to cause infection relies on different virulence mechanisms, but in Francisella tularensis relatively few virulence factors are known. Two F. tularensis subspecies are virulent in humans; the highly virulent subspecies tularensis, also referred to as type A, and the less virulent subspecies holarctica, also called type B. The aim of this thesis has been to improve the knowledge regarding the ability of Francisella to cause disease, with the emphasis on surface located and membrane associated proteins and structures. In addition I have also investigated how virulence is regulated by studying the role of the small RNA chaperone, Hfq. The genome of Francisella appears to encode few regulatory genes. In my work I found that Hfq has an important role in regulation of virulence associated genes in Francisella. Similar to what has been found in other pathogens, Hfq functions in negative regulation, and this is the first time a negative regulation has been described for genes in the Francisella pathogenicity island. Another protein with a key role in virulence is a homologue to a disulphide oxidoreductase, DsbA, which was identified as an outer membrane lipoprotein in Francisella. A dsbA mutant was found to be severely attenuated for virulence and also induced protection against wild-type infections, thus making it a candidate for exploration as a new live vaccine. Additional genes with homology to known virulence determinants include a type IV pilin system. The pilin homologue, PilA, was identified to be required for full virulence in both type A and type B strains. In addition, genes involved in pili assembly and secretion, pilC and pilQ, were also found to be virulence associated in the type A strain. In summary, dsbA, hfq and type IV pili associated genes were indentified to be virulence determinants in F. tularensis. DsbA is a potential target for drug development and a dsbA mutant a candidate for a new live vaccine strain. Furthermore the identification of Hfq as a novel regulatory factor opens new insights into the virulence regulatory network in Francisella.
|
20 |
Characterization of E coli Hfq structure and its RNA binding propertiesSun, Xueguang 07 December 2005 (has links)
Hfq is a bacterial RNA-binding protein recently shown to contain the Sm motif, a characteristic of Sm proteins that function in RNA processing in archaea and eukaryotes. Hfq plays a major role in RNA-RNA interactions regulating translation. Comparative structural modeling and amino acid sequence alignment were used to predict the 3-D structure of Hfq and the model was in excellent agreement with the crystal structure which determined for S. aureus Hfq. The evolution of Hfq was explored by a BLAST search of microbial genomes followed by phyletic analysis. About half of the genomes examined contain at least one gene coding for Hfq. The presence and absence of Hfq closely followed major bacterial clades. The potential RNA binding residues on the two surfaces of the Hfq hexamer were proposed based on the bioinformatics studies and the mutant Hfq proteins with either single or double mutations on the two surfaces of the Hfq hexamer were generated. Their RNA binding properties was biophysically studied by gel-shift assay, fluorescence anisotropy and fluorescence quenching techniques. Results indicated that 1) point mutations on the distal surface of the Hfq hexamer, Y25A and K31A, have a major effect on A18 binding. Both reduce binding by about 1000 fold. Mutations on the proximal surface have a small or no influence on A18 binding. 2) Two mutations, F39A and R16A, on the proximal surface of the Hfq structure reduce binding to the DsrA domain II by 10 fold. Other mutations reduce binding by less than 2 fold. 3) An amino acid covariance was observed in L12 and F39. Mutation L12F can partially restore F39A in DsrA RNA binding. 4) It appears that two Hfq hexamers cooperatively bind one RNA for both DsrADII and A18.
|
Page generated in 0.0195 seconds