• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 129
  • 17
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 8
  • 4
  • 4
  • 4
  • Tagged with
  • 490
  • 490
  • 211
  • 199
  • 113
  • 100
  • 99
  • 63
  • 62
  • 58
  • 58
  • 47
  • 46
  • 46
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Jet impingement boiling heat transfer at low coiling temperatures

Chan, Phillip 05 1900 (has links)
The production of advanced high strength steels (AHSS) for use in the automotive and construction industries requires complex control of runout table (ROT) cooling. Advanced high strength steels require coiling at temperatures below 500 °C in order to produce a complex multi-phase microstructure. The research described here will investigate the boiling conditions that occur for moving plate experiments when steel is cooled towards low coiling temperatures. Experiments were performed on a pilot-scale ROT located at the University of British Columbia using industrially supplied steel plates. Tests were performed for four different speeds (0.3, 0.6, 1.0 and 1.3 m/s) and three different initial plate temperatures(350, 500 and 600 °C). Each plate was instrumented with thermocouples in order to record the thermal history of the plate. The results show that cooling is more effective at slower speeds within the stagnation zone for surface temperatures over 200 °C. Outside the stagnation zone regardless of speed cooling is primarily governed by air convection and radiation with minor effects from latent heat caused by splashing water. The maximum peak heat flux value increases with decreasing speed and occurs at a surface temperature of approximately 200 °C, regardless of speed. Below a surface temperature of 200 °C, speed has a negligible effect on peak heat flux. The maximum integrated heat flux seems to vary with speed according to a second order polynomial. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
92

Light Weight and High Strength Materials Made of Recycled Steel and Aluminum

Nounezi, Thomas January 2012 (has links)
Recycling has proven not only to address today’s economical, environmental and social issues, but also to be imperative for the sustainability of human technology. The current thesis has investigated the feasibility of a new philosophy for Recycling (Alloying-Recycling) using steel 1020 and aluminum 6061T6. The study was limited to the metallurgical aspects only and has highlighted the potential of recycled alloys made of recycled aluminum and steel to exhibit substantially increased wear resistance and strength-to-weight ratio as compared to initial primary materials. Three alloy-mixtures are considered: TN3 (5wt% 1020 +95wt% 6061T6); TN5 (0.7wt% 1020 + 99.3wt% 6061T6); and TN4 (10wt% 6061T6 + 90wt% 1020). A Tucker induction power supply system (3kW; 135-400 kHz) is used to melt the alloy mixtures for casting in graphite crucibles. Heat treatment of the cast samples is done using a radiation box furnace. Microscopy, Vickers hardness and pin-on-disc abrasive wear tests are performed. Casting destroyed the initial microstructures of the alloys leading to a hardness reduction in the as-cast and solution heat-treated aluminum rich samples to 60 Hv from 140 Hv. Ageing slightly increased the hardness of the cast samples and provided a wear resistance two times higher than that of the initial 6061T6 material. On the steel rich side, the hardness of the as-cast TN4 was 480 Hv, which is more than twice as high as the initial hardness of steel 1020 of 202 Hv; this hints to strong internal and residual stress, probably martensite formation during fast cooling following casting. Solution heat treatment lowered the hardness to the original value of steel 1020, but provided about ten (10) times higher wear resistance; this suggests higher ductility and toughness of normalised TN4 as compared to 1020. In addition, TN4 exhibits about 25% weight reduction as compared to 1020. The actual recycling process and the effect of non-metallic impurities shall be investigated in future works. Also, the casting and heat treatment processes need to be improved.
93

Effect of High-Performance Concrete and Steel Materials on the Blast Performance of Reinforced Concrete One-Way Slabs

Melançon, Christian January 2016 (has links)
The mitigation of blast hazards on critical reinforced concrete structures has become a major concern in regards to the safety of people and the integrity of buildings. Recent terrorist incidents and accidental explosions have demonstrated the need to study the effects of such threats on structures in order to develop effective methods of reducing the overall impact of blast loads. With the arrival of innovative materials such as steel fibre reinforced concrete (SFRC), ultra-high performance fibre reinforced concrete (UHPFRC) and high strength steel reinforcement, research is required in order to successfully adapt these new materials in blast-resistant structures. Hence, the objective of this thesis to conduct an experimental parametric study with the purpose of investigating the implementation of these innovative materials in reinforced concrete slabs and panels. As part of the study, a total of fourteen one-way slab specimens with different combinations of concrete, steel fibres and steel reinforcement are tested under simulated blast loads using the University of Ottawa Shock-Tube Facility. The test program includes three slabs constructed with normal-strength concrete, five slabs constructed with SFRC and six slabs constructed with UHPFRC. Among these specimens, four are reinforced with high-performance steel reinforcement. The specimens are subjected to repeated blast loading with gradually increasing reflected pressure and reflected impulse until failure. The performance of the slabs is studied using various criteria such as failure load and mode, maximum and residual deflections, as well as tensile cracking, spalling and secondary fragmentation control. The behaviour of all specimens is compared in different categories to determine the effects of concrete type, steel reinforcement type, steel fibre content and steel fibre type on blast performance. As part of the analytical study the response of the slab specimens is predicted using dynamic inelastic single-degree-of-freedom (SDOF) analysis. The dynamic analysis is conducted by generating load-deformation resistance functions for the slabs incorporating dynamic material properties.
94

Effect of High-Performance Steel Materials on the Blast Behaviour of Ultra-High Performance Concrete Columns

De Carufel, Sarah January 2016 (has links)
Previous events have demonstrated the vulnerability of reinforced concrete infrastructure to blast loading. In buildings, ground-story columns are key structural components, and their failure can lead to extensive damages which can cause progressive collapse. To prevent such disasters, the steel reinforcement in such columns must be properly detailed to ensure sufficient strength and ductility. The use of modern concrete materials such ultra-high performance concrete (UHPC) is one potential solution to improve the blast performance of columns. UHPC shows high compressive strength, high tensile resistance and superior toughness, properties which make it ideal for use in the blast-resistant design of columns. The combined use of UHPC and high-performance steels can potentially be used to further enhance the blast resistance of columns. This thesis presents an experimental and analytical study which investigated the use of high-performance materials to increase the blast capacity and ductility of reinforced concrete columns. As part of the experimental study, a total of seventeen columns were tested under simulated blast loading using the University of Ottawa Shock-Tube. Parameters investigated included the effect of concrete type (NSC and UHPC), steel reinforcement type (normal-strength, high-strength or highly ductile), longitudinal reinforcement ratio, seismic detailing and fiber properties. The test program included two control specimens built with normal-strength concrete, five specimens built with UHPC in combination with high-strength steel, and ten columns built with highly ductile stainless steel reinforcement. Each column was subjected to a series of increasing blast pressures until failure. The performance of the columns is investigated by comparing the displacements, impulse capacity and secondary fragmentation resistance of the columns. The results show that using high-performance steels increases the blast performance of UHPC columns. The use of sufficient amounts of high-strength steel in combination with UHPC led to important increases in column blast capacity. The use of ductile stainless steel reinforcement allowed for important enhancements in column ductility, with an ability to prevent rupture of tension steel reinforcement. The study also shows that increasing the longitudinal reinforcement ratio is an effective means of increasing the blast resistance of UHPC columns The thesis also presents an extensive analytical study which aimed at predicting the response of the test columns using dynamic inelastic, single-degree-of-freedom (SDOF) analysis. A sensitivity analysis was also performed to examine the effect of various modelling parameters on the analytical predictions. Overall, it was shown that SDOF analysis could be used to predict the blast response of UHPC columns with reasonable accuracy. To further corroborate the results from the experimental study, the thesis also presents an analytical parametric study examining the blast performance of larger-scale columns. The results further demonstrate the benefits of using UHPC and high-performance steel reinforcement in columns subjected to blast loading.
95

Rapid repair of levee breaches: plug dimension parameterization

Burg, Elizabeth Cathleen 10 December 2010 (has links)
Thousands of miles of levees exist in the United States and around the world and failure of these levees as a result of breaching has the potential to cause severe flooding damage. A technology, the PLUG, has been developed to temporarily reduce the flow through a levee breach as an alternative to traditional methods. This study is focused on developing initial guidance on the parameters for sizing a PLUG using a 1:100 (model:prototype) Froude scaled model. It was found that for the PLUG to effectively reduce flow through the breach, the required ratio of the PLUG length to the breach width is greater than two (L/W > 2), and that effectiveness increases as the ratio between the PLUG diameter and water depth (D/d) increases. Effectiveness also increases when the percent fill (P) is between 65 – 75 percent. Trends in the threshold between catastrophic failure and success were also noted.
96

The Microstructure, Hardness, Impact Toughness, Tensile Deformation and Final Fracture Behavior of Four Specialty High Strength Steels

Kannan, Manigandan 16 August 2011 (has links)
No description available.
97

EFFECT OF Sb-MICRO ADDITIONS ON THE OXIDATION KINETICS AND REACTIVE WETTING OF ADVANCED HIGH-STRENGTH STEELS

Pourbahari, Bita January 2023 (has links)
The unique combination of high specific strength and ductility in third generation advanced high-strength steels (3G-AHSSs) has garnered significant attention from top automotive steel industries. These materials are being considered as potential options for making lighter body components due to their strength and ability to tolerate thinner material cross-sections. However, galvanizing these steels through the continuous hot-dip galvanizing process is challenging, because the main alloying elements such as Mn, Si, Al, and Cr tend to selectively oxidize on the steel surface during the annealing process before being immersed in the galvanizing bath containing Zn(Al, Fe). The presence of these oxides extensively covering the substrate surface can negatively impact reactive wetting, coating adhesion, and overall coating quality. In this study, the selective oxidation kinetics and reactive wetting of a series of Fe-(2-10)Mn-(0.00/0.01/0.03)Sb (at. pct) were determined and a model was proposed for analyzing oxide growth during intercritical annealing prior to galvanizing. Annealing heat treatments were carried out at 676, 725, 775, and 825 ˚C for 60-480s holding time in a N2-5vol pct H2 process with a dew point of –10 ˚C. MnO was formed on all samples after annealing. It was determined that the annealing conditions (temperature and isothermal holding time) affected the external oxide thickness and depth of the oxidation zone, which in turn influenced the MnO growth rate. With increasing the bulk Mn content of the alloy, the Mn elemental flux to the external surface increased, resulting in an increase in the oxidation parabolic rate constant. The average activation energy of internal oxidation for the Fe-2Mn, Fe-6Mn and Fe-10Mn alloys were determined to be 216±15 kJ/mol, 178 ± 18 kJ/mol and 152 ±10 kJ/mol, respectively, which are consistent with the activation energy of oxygen diffusion through MnO interfaces and the bulk diffusion of oxygen in austenite. Moreover, the average activation energy for external oxide growth was ~113±18 kJ/mol, which was attributed to the diffusion of Mn cations along the grain boundaries of the external Mn oxides. It was determined that micro addition of Sb to the Fe-Mn alloys led to a reduction in the oxidation rate constant, external oxide thickness, and internal oxidation zone, which was attributed to Sb segregation at both the external and internal oxide interface, resulting in the reduction of oxygen permeability. The reduction was more significant in the Fe-10Mn alloys, primarily attributable to the increased Sb segregation at the interfaces. The research showed that when the bulk Mn content increased, more antimony (Sb) segregated at both the internal and external oxide/substrate interface. As a result, the oxygen present at these interfaces decreased. This is attributed to the reduction of Sb solubility in α-Fe with increasing Mn and positive interactions between Sb and Mn. Advanced Atom Probe Tomography (APT) analysis confirmed that as more Sb segregated at the interfaces, the excess oxygen reduced due to site competition between O and Sb. Additionally, Sb surface segregation kinetics for Fe-(0.01/0.03)Sb and Fe-2Mn-(0.01/0.03)Sb at.% were determined based on the modified Darken model and linear heating followed by isothermal annealing. After the annealing, Sb segregation was detected on the surface of both the Fe-xSb and Fe-2Mn-xSb alloys, which increase with increasing temperature and holding time. The segregation rate, as determined from the Darken curves, was higher in Fe-Sb alloys compared to Fe-2Mn-Sb alloys, which can be attributed to variations in the crystal structure and the density of defects within the metal matrix. Additionally, the activation energy for Sb diffusion in both Fe-Sb and Fe-2Mn-xSb alloys were determined to be approximately 193±18 kJ/mol closely aligns with the activation energy of Sb bulk diffusion in α-Fe. Simulated galvanizing treatments were conducted on Fe-(2-10)Mn-(0.00/0.03)Sb at.% alloys. It was found that Sb segregation at the external/oxide interface resulted in a decrease in the size and thickness of the external oxide particles, which can facilitate better contact between the zinc bath and the substrate. Furthermore, it was found that Sb segregation at the interface between the external oxide and substrate led to a decrease in the stability of the interfacial region. This effect was attributed to an increase in the local atomic spacing near the interface, caused by Sb segregation. As a result, a local strain was observed near the interface. This localized strain significantly reduced the energy needed to separate the oxide from the metal matrix, contributing to decreased stability of the interfacial region. The higher bulk manganese (Mn) content led to increased segregation of antimony (Sb), resulting in a greater local strain within the interfacial region. These effects, in turn, enhanced the kinetics of the aluminothermic reduction reaction and assisted oxide lift-off. Furthermore, the closely packed Fe-Al intermetallics at the coating/steel interface increased as a result of adding Sb to the steel. In addition, no Sb segregation was observed at interfacial layer/metal interface. This absence of segregation can be attributed to the dissolution of segregated Sb into the liquid zinc. It was determined that Sb, which segregated at the external oxide/substrate interface during annealing, dissolved into the zinc bath and disrupted its bond with iron. This disruption occurred due to the higher electronegativity of Sb compared to Fe with Zinc, as well as the sufficient solubility of Sb in liquid zinc. / Thesis / Doctor of Science (PhD) / The unique combination of high specific strength and ductility exhibited by third-generation advanced high-strength steels has captured the attention of automotive industries. However, challenges arise when attempting to galvanize these steels through continuous hot-dip galvanizing processes. The selective oxidation of alloying elements during annealing can have detrimental effects on reactive wetting and coating adhesion. The objective of this research was to improve the coating quality of Mn-containing steels by introducing micro-additions of Sb. Sb segregation to the surface and interfaces began to occur during annealing. Segregated Sb resulted in a reduction of the oxidation rate. Sb segregation at oxide interfaces also contributed to decreased oxygen permeability. Upon immersion in the liquid zinc bath, both Sb and Fe dissolved into the zinc, leading to the formation of an interfacial layer on the surface, which indicates successful reactive wetting. The findings of this research provide valuable insights for improving galvanizing processes and enhancing coating quality, specifically in the context of third-generation advanced high-strength steels.
98

Laboratory testing protocols to represent thermo-mechanical signatures of high strength concretes in medium to mass sized placements

Carey, Ashley Suzanne 30 April 2021 (has links)
Structural elements comprised of high strength concrete (HSCs) have gained popularity due to their high compressive strength, increased tensile strength, and low permeability that can be achieved with smaller placements relative to what would be needed with traditional ready mixed concretes. HSCs are also gaining interest for mass placements that are very large. Determining in-place properties of any of these structures is critical to the overall success of a project and elusive to determine prior to placement. In this dissertation, a laboratory based thermo-mechanical framework is outlined to predict in-place properties of modest to mass sized HSC structures using mostly existing and common laboratory testing methods with a few additional items on the same scale as existing equipment. Various curing protocols were evaluated in this study to determine a recommended set of protocols to reproduce thermal profiles of modest and mass sized structures on laboratory scale specimens. These specimens can then be tested following standard testing protocols to reasonably estimate in-place mechanical properties. This framework is envisioned to be a foundational piece of a standard test method in the future. Approximately 600 concrete specimens were tested for compressive strength, 300 specimens for elastic modulus, 100 for splitting tensile strength as well as 100 cement paste specimens for compressive strength. Additionally, approximately 400 time-temperature curves were recorded for both cement paste and HSC specimens.
99

Residual strength of a high-strength concrete subjected to triaxial pre-stress

Vankirk, George Harlan 25 November 2020 (has links)
Simplified mechanical loading paths, which represent more complex loading paths observed during penetration, were investigated using a triaxial chamber and a high-strength concrete. Objectives were to determine the effects that stress/strain (load) paths had on the material’s unconfined (UC) residual strength. The loading paths included hydrostatic compression (HC), uniaxial strain in compression (UX), and uniaxial strain load biaxial strain unload (UXBX). The experiments indicate that load paths associated with non-visible microstructural damage were HC and UX, which produced minimal impact on the residual UC strength (<30%), while the load paths associated with visible macro-structural damage were UXBX, which significantly reduced the UC strength (>90%). The simplified loading paths were also investigated using a material model driver code that was fit to a widely used Department of Defense material model. Virtual experiment data revealed that the material model investigated overestimated material damage and produced poor results when compared to experimental data.
100

Analytical Evaluation of Structural Concrete Members with High-Strength Steel Reinforcement

Ward, Elizabeth L. 20 April 2009 (has links)
No description available.

Page generated in 0.0754 seconds