Spelling suggestions: "subject:"highercontrast"" "subject:"dichtekontrast""
31 |
High Birefringence And Low Viscosity Liquid CrystalsWen, Chien-Hui 01 January 2006 (has links)
In this dissertation, liquid crystal (LC) materials and devices are investigated in order to meet the challenges for photonics and displays applications. We have studied three kinds of liquid crystal materials: positive dielectric anisotropic LCs, negative dielectric anisotropic LCs, and dual- frequency LCs. For the positive dielectric anisotropic LCs, we have developed some high birefringence isothiocyanato tolane LC compounds with birefringence ~0.4, and super high birefringence isothiocyanato biphenyl-bistolane LC compounds with birefringence as high as ~0.7. Moreover, we have studied the photostability of several high birefringence LC compounds, mixtures, and LC alignment layers in order to determine the failure mechanism concerning the lifetime of LC devices. Although cyano and isothiocyanato LC compounds have similar absorption peaks, the isothiocyanato compounds are more stable than their cyano counterparts under the same illumination conditions. This ultraviolet-durable performance of isothiocyanato compounds originates from its molecular structure and the delocalized electron distribution. We have investigated the alignment performance of negative dielectric anisotropic LCs in homeotropic (vertical aligned, VA) LC cell. Some (2,3) laterally difluorinated biphenyls, terphenyls and tolanes are selected for this study. Due to the strong repulsive force between LCs and alignment layer, (2,3) laterally difluorinated terphenyls and tolanes do not align well in a VA cell resulting in a poor contrast ratio for the LC panel. We have developed a novel method to suppress the light leakage at dark state. By doping positive [Delta][epsilon] or non-polar LC compounds/mixtures into the host negative LC mixtures, the repulsive force is reduced and the cell exhibits an excellent dark state. In addition, these dopants increase the birefringence and reduce the viscosity of the host LCs which leads to a faster response time. Dual-frequency liquid crystal exhibits a unique feature that its dielectric anisotropy changes from positive to negative when we increase the operating frequency. Submillisecond response time can be achieved by switching the frequency of a biased voltage, rather than switching the voltage at a given frequency. In this dissertation, we investigate the dielectric heating effect of dual-frequency LCs. Because the absorption peak of imaginary dielectric constant occurs at high frequency region (~ MHz), there is a heat generated when the LC cell is operated at a high frequency voltage. To measure the transient temperature change of the LC inside the cell, we have developed a non-contact method by utilizing the temperature-dependent birefringence property of the LC. Most importantly, we have formulated a new dual-frequency LC mixture which greatly reduces the dielectric heating effect while maintaining good physical properties. Another achievement in this thesis is that we have developed a polarization independent phase modulator by using a negative dielectric anisotropic LC gel. With ~20 % of polymer mixed in the LC host, the LC forms polymer network which, in turn, exerts a strong anchoring force to the neighboring LC molecules. As a result, the operating voltage increases but the response time is significantly decreased. On the phase shift point of view, our homeotropic LC gel has ~0.08 [pi] phase shift, which is 2X larger than the previous nano-sized polymer-dispersed liquid crystal droplets. Moreover, it is free from light scattering and requires a lower operating voltage. In conclusion, this dissertation provides solutions to improve the performance of LC devices both in photonics and displays applications. These will have great impacts in defense and display systems such as optical phased array, LCD TVs, projectors, and LCD monitors.
|
32 |
Electrical Capacitance Volume Tomography Of High Contrast Dielectrics Using A Cuboid GeometryNurge, Mark 01 January 2007 (has links)
An Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This dissertation presents a method of reconstructing images of high contrast dielectric materials using only the self capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. Comparisons with standard two dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.
|
33 |
Imagerie haute dynamique en larges bandes : coronographie et minimisation des tavelures en plan focal / High contrast imaging in broadband : coronagraphy and speckles minimisation in focal planeDelorme, Jacques-Robert 29 September 2016 (has links)
Parmi les 3000 exoplanètes détectées à ce jour, seule une cinquantaine ont été observées par imagerie dont l’avantage est de donner accès à la lumière des exoplanètes, ce qui ouvre la voie aux études spectrales de leur atmosphère et de leur surface. L’imagerie est aussi la seule méthode permettant d’étudier des exoplanètes situées dans les parties externes des systèmes stellaires ainsi que les disques circumstellaires, ce qui est fondamental pour comprendre les différentes étapes de la formation planétaires. Cependant, ces techniques doivent relever deux défis : la faible séparation angulaire qui existe entre une exoplanète et son étoile, ainsi que le contraste entre ces deux objets qui est de l’ordre de 10-4 dans l'infrarouge proche pour des Jupiter jeunes et de l'ordre de 10-10 dans le visible pour des planètes matures telles la Terre et Jupiter. Les instruments actuels utilisent des coronographes pour filtrer la lumière de l'étoile hôte et observer son voisinage ténu. Ils utilisent également des techniques actives qui compensent les effets des aberrations de surface d’onde pour minimiser le niveau des tavelures dans l'image finale. Couplés à des techniques d'imagerie différentielle, ces instruments ont permis la découverte et l'étude d'exoplanètes jeunes et massives, et de disques circumstellaires. Cependant, pour détecter des exoplanètes moins lumineuses et plus proches de leur étoile, les techniques d’imagerie font aujourd’hui l’objet d'une recherche active en laboratoire. Par exemple, l’Observatoire de Paris a développé le banc très haute dynamique (THD) pour tester et optimiser l’association de plusieurs techniques d’imagerie haute dynamique comme le four quadrants phase masque (FQPM) ou la self-coherent camera (SCC) qui est une technique d’analyse de surface d’onde en plan focal.Au début de ma thèse, mes travaux se sont concentrés sur le développement et l’étude de coronographes et d’analyseurs en plan focal pouvant travailler en larges bandes spectrales (typiquement 12,5 % à 40 %). J’ai testé sur le banc THD deux coronographes, le multi four-quadrant phase-mask (MFQPM) et le dual-zone phase-mask (DZPM). J’ai prouvé que le DZPM peut atteindre des contrastes de l’ordre de 4 10-8 pour des séparations angulaires comprises entre 7 et 16 λ/D et une bande spectrale de 250 nm centrée à 640 nm. J’ai également développé et testé une version de la SCC moins sensible au chromatisme appelée multireference self-coherent camera (MRSCC). En la combinant au DZPM, j’ai réussi à atteindre en boucle fermée des contrastes de l’ordre de 4.5 10-8 entre 5 et 17 λ/D pour une bande spectrale de 80 nm centrée à 640 nm. Ces deux résultats sont importants, car ils montrent qu'il est possible de construire un instrument qui atténue la lumière et contrôle activement les aberrations optiques directement à partir de l'image scientifique en large bande spectrale. À la fin de ma thèse, nous avons mis en place une collaboration visant à tester la SCC sur le télescope Hale du mont Palomar. Lors de deux missions auxquelles j’ai participé, nous avons prouvé que la SCC pouvait être associée avec un coronographe de type vortex ce qui n’avait jamais était fait auparavant. De plus, suite aux résultats obtenus sur source interne, nous prévoyons une démonstration sur ciel à l'automne 2016 / Among the 3000 exoplanets detected at this time, about 50 have been observed by direct imaging. The benefit of direct imaging is to give access to exoplanet light, paving the way for spectroscopic study of their atmospheres and surfaces. Moreover, direct imaging is also the only method that enables the study of exoplanets located in the outer parts of the stellar systems as well as circumstellar disks, which are fundamental to understand the different stages of planetary formation. However, there are two challenges : the small angular separation between an exoplanet and its star (less than a fraction of 1’’), and the contrast between the two objects which is of the order of 10-4 in near infrared for young Jupiter and of the order of 10-10 in visible light for Earth like planets. Existing instruments use coronagraphs to filter light from the host star and observe its tenuous neighborhood. They also use active techniques in order to minimize, in the final image, the brightness of speckles induced by wavefront aberrations. Coupled with differential imaging techniques, these instruments led to the discovery and study of young and massive exoplanets and circumstellar disks. However, to detect fainter exoplanets closer to their star, imaging techniques are now at the heart of an active research. For example, the Paris Observatory developed the banc très haute dynamique (THD bench) aiming at testing several high contrast imaging techniques and their associations as the four quadrants phase masque (FQPM) and the self-coherent camera (SCC) which is a focal plane wavefront sensor.At the beginning of my PHD, I mainly focused my work on the development and the study of coronagraphs and focal plane wavefront sensors able to work in broadband (between 12,5 % and 40 %). I tested on the THD bench two coronagraphs, the multi four-quadrant phase-mask (MFQPM) and the dual-zone phase-mask (DZPM). I proved that the DZPM is able to reach contrasts of 4 10-8 at angular separations ranging from 7 to 16 λ/D using a spectral bandwidth of 250 nm centered on 640 nm (40 %). I also developed and tested a new version of the SCC, less sensitive to chromatism, called the multireference self-coherent camera (MRSCC). By combining both DZPM and MRSCC, I reached in closed loop contrasts of 4.5 10-8 between 5 and 17 λ/D for a spectral bandwidth of 80 nm centered on 640 nm (12,5 %). These two results are important because they show that it is possible to build an instrument able to reduce the stellar light and actively control optical aberrations directly from a scientific image registered in a large spectral bandwidth which is requiered for the next generation of instruments. During my PHD, we also strated a collaboration to install the SCC at the Palomar Observatory. During two missions in which I took part, we proved, for the first time, that the SCC can be associated with a vortex coronagraph. Finally, based on these results, we plan to demonstrate the SCC concept on sky in the fall of this year
|
34 |
La Méthode des Équations Intégrales pour des Analyses de Sensitivité.Zribi, Habib 21 December 2005 (has links) (PDF)
Dans cette thèse, nous menons à l'aide de la méthode des équations intégrales des analyses de sensitivité de solutions ou de spectres de l'équation de conductivité par rapport aux variations géométriques ou de paramètres de l'équation. En particulier, nous considérons le problème de conductivité dans des milieux à forts contrastes, le problème de perturbation du bord d'une inclusion de conductivité, le problème de valeurs propres du Laplacien dans des domaines perturbés et le problème d'ouverture de gap dans le spectre des cristaux photoniques.
|
35 |
Formation des planètes géantes autour des étoiles de faibles masses : contraintes observationnelles en imagerie (optique adaptative) / Understanding the formation of giant planets around low mass stars : direct observational constraints with adaptive optic imagingLannier, Justine 26 September 2016 (has links)
L'étude des exoplanètes, et en particulier celle des planètes géantes gazeuses, est une branche jeune et florissante de l'astrophysique moderne. Les grandes problématiques qui ont émergé des études sur cette population de planètes consistent à comprendre comment elles se sont formées, comment elles ont spatialement et temporellement évolué, et comment elles influencent d'éventuelles autres planètes au sein des systèmes stellaires. Afin d'apporter des réponses à ces questions, il a été nécessaire de développer des techniques d'observation et des outils d'analyse des données les plus performants possibles. C'est dans ce cadre que j'ai effectué mon travail de thèse, qui s'est articulé autour de trois projets.En premier lieu, je me suis intéressée à étudier le taux d'occurrence des planètes géantes gazeuses en orbite autour des naines M. Pour réaliser cette étude statistique, j'ai utilisé des données de deux relevés NaCo, le premier étant consacré aux naines M, et le second étant constitué d'étoiles AF et ayant été précédemment étudié par des membres de notre équipe. J'ai développé un code Monte Carlo, et me suis servie de la logique de la contraposition pour mener une étude comparative des résultats de ces deux relevés. J'ai également associé des gammes de rapports de masses entre la planète et son étoile à des mécanismes de formation privilégiés. J'en ai conclu que la formation des planètes géantes gazeuses formée par accrétion sur coeur était favorisée si ces planètes se situaient autour d'étoiles AF plutôt que des naines M, pour des séparations allant de 8 à 400 unités astronomiques. La fréquence des planètes géantes gazeuses reste toutefois faible quelque soit la masse de l'étoile considérée (typiquement <20%).Je me suis par la suite intéressée à développer un outil statistique capable de combiner des données de vitesses radiales et d'imagerie directe afin d'apporter des contraintes supplémentaires sur la population de planètes géantes situées à toutes les séparations, pour des systèmes particuliers. Le code que j'ai écrit repose sur une génération Monte Carlo de planètes synthétiques. Je l'ai appliqué sur les données de vitesses radiales et d'imagerie d'étoiles jeunes et proches : AUMic, ßPictoris, HD113337, et HD95086. Les futures applications pourront être nombreuses à la fois parce que les données de vitesses radiales sont de plus en plus abondantes, et parce que les instruments de haut contraste et haute résolution angulaire permettent de sonder des séparations toujours plus courtes.Grâce à ces deux premiers projets de ma thèse, j'ai pris en main les outils de réduction de données développés à l'IPAG, et j'ai développé des outils statistiques me permettant de commencer à mener mon dernier projet. Cet ultime projet consiste en l'observation, la réduction et l'analyse de données de vitesses radiales HARPS et d'imagerie SPHERE obtenues conjointement pour un set de naines K5-M5, proches et jeunes. L'analyse de l'ensemble des données va permettre d'apporter de fortes contraintes sur les populations de planètes géantes gazeuses en orbite autour des étoiles de faible masse, depuis les très courtes jusqu'aux plus longues séparations. / Studying exoplanets, and in particular gaseous giant planets, is a new field of modern astrophysics. Understanding how the giant planets form, dynamically evolve, evolve with time, and have an impact on potential other planets within a stellar system are part of the biggest challenges of this science. The development of the most efficient observational technics and optimal analysis tools have been necessary to bring answers to these problematics. This is the context in which I realized my PhD thesis. I present in this manuscript the three projects that I led during these last three years.First, I studied the occurrence rate of the giant planets that orbit around M dwarfs. To realize this statistical study, I used NaCo data from two surveys. The first survey was composed of M dwarfs, the second was made of AF stars that were already studied by members of our team. I developed a Monte Carlo code, and used the contrapositive logic to lead a comparative analysis of these two surveys. I also associated stellar to planet mass ratios to planetary formation scenarios. My conclusions are that giant planets can more easily be formed by core accretion around AF stars than around M dwarfs, for separations between 8 and 400 astronomical units. Wide-orbit giant planets are rare whatever the stellar mass (basically <20%).Then, I developed a statistical tool that combines radial velocity and direct imaging data of specific stars, to better constrain the giant planet population at all separations. The code that I wrote is based on a Monte Carlo generation of synthetic planet populations. I applied this code on radial velocity and direct imaging data from young and nearby stars: AUMic, ßPictoris, HD113337, and HD95086. The future applications will be numerous thanks to the increase of the time baseline of radial velocity data and thanks to new high contrast and high resolution instruments able to probe shorter regions.These first two projects have allowed me to understand how to reduce and analyse data, and to develop statistical tools useful for my last project. This last project consists of observing, reducing and analyzing radial velocity and direct imaging data of a sample of K5-M5 young and nearby dwarfs. This project will bring strong constraints on the gaseous giant planet population that orbits around low mass stars, from short to wider separations.
|
36 |
Détection et caractérisation d'exoplanètes dans des images à grand contraste par la résolution de problème inverse / Detection and characterization of exoplanets in high contrast images by the inverse problem approachCantalloube, Faustine 30 September 2016 (has links)
L’imagerie d’exoplanètes permet d’obtenir de nombreuses informations sur la lumière qu’elles émettent, l’interaction avec leur environnement et sur leur nature. Afin d’extraire l’information des images, il est indispensable d’appliquer des méthodes de traitement d’images adaptées aux instruments. En particulier, il faut séparer les signaux planétaires des tavelures présentes dans les images qui sont dues aux aberrations instrumentales quasi-statiques. Dans mon travail de thèse je me suis intéressée à deux méthodes innovantes de traitement d’images qui sont fondés sur la résolution de problèmes inverses.La première méthode, ANDROMEDA, est un algorithme dédié à la détection et à la caractérisation de point sources dans des images haut contraste via une approche maximum de vraisemblance. ANDROMEDA exploite la diversité temporelle apportée par la rotation de champ de l’image (où se trouvent les objets astrophysiques) alors que la pupille (où les aberrations prennent naissance) est gardée fixe. A partir de l’application sur données réelles de l’algorithme dans sa version originale, j’ai proposé et qualifié des améliorations afin de prendre en compte les résidus non modélisés par la méthode tels que les structures bas ordres variant lentement et le niveau résiduel de bruit correlé dans les données. Une fois l’algorithme ANDROMEDA opérationnel, j’ai analysé ses performances et sa sensibilité aux paramètres utilisateurs, montrant la robustesse de la méthode. Une comparaison détaillée avec les algorithmes les plus utilisés dans la communauté a prouvé que cet algorithme est compétitif avec des performances très intéressantes dans le contexte actuel. En particulier, il s’agit de la seule méthode qui permet une détection entièrement non-supervisée. De plus, l’application à de nombreuses données ciel venant d’instruments différents a prouvé la fiabilité de la méthode et l’efficacité à extraire rapidement et systématiquement (avec un seul paramètre utilisateur à ajuster) les informations contenues dans les images. Ces applications ont aussi permis d’ouvrir des perspectives pour adapter cet outil aux grands enjeux actuels de l’imagerie d’exoplanètes.La seconde méthode, MEDUSAE, consiste à estimer conjointement les aberrations et les objets d’intérêt scientifique, en s’appuyant sur un modèle de formation d’images coronographiques. MEDUSAE exploite la redondance d’informations apportée par des images multi-spectrales. Afin de raffiner la stratégie d’inversion de la méthode et d’identifier les paramètres les plus critiques, j’ai appliqué l’algorithme sur des données générées avec le modèle utilisé dans l’inversion. J’ai ensuite appliqué cette méthode à des données simulées plus réalistes afin d’étudier l’impact de la différence entre le modèle utilisé dans l’inversion et les données réelles. Enfin, j’ai appliqué la méthode à des données réelles et les résultats préliminaires que j’ai obtenus ont permis d’identifier les informations importantes dont la méthode a besoin et ainsi de proposer plusieurs pistes de travail qui permettraient de rendre cet algorithme opérationnel sur données réelles. / Direct imaging of exoplanets provides valuable information about the light they emit, their interactions with their host star environment and their nature. In order to image such objects, advanced data processing tools adapted to the instrument are needed. In particular, the presence of quasi-static speckles in the images, due to optical aberrations distorting the light from the observed star, prevents planetary signals from being distinguished. In this thesis, I present two innovative image processing methods, both based on an inverse problem approach, enabling the disentanglement of the quasi-static speckles from the planetary signals. My work consisted of improving these two algorithms in order to be able to process on-sky images.The first one, called ANDROMEDA, is an algorithm dedicated to point source detection and characterization via a maximum likelihood approach. ANDROMEDA makes use of the temporal diversity provided by the image field rotation during the observation, to recognize the deterministic signature of a rotating companion over the stellar halo. From application of the original version on real data, I have proposed and qualified improvements in order to deal with the non-stable large scale structures due to the adaptative optics residuals and with the remaining level of correlated noise in the data. Once ANDROMEDA became operational on real data, I analyzed its performance and its sensitivity to the user-parameters proving the robustness of the algorithm. I also conducted a detailed comparison to the other algorithms widely used by the exoplanet imaging community today showing that ANDROMEDA is a competitive method with practical advantages. In particular, it is the only method that allows a fully unsupervised detection. By the numerous tests performed on different data set, ANDROMEDA proved its reliability and efficiency to extract companions in a rapid and systematic way (with only one user parameter to be tuned). From these applications, I identified several perspectives whose implementation could significantly improve the performance of the pipeline.The second algorithm, called MEDUSAE, consists in jointly estimating the aberrations (responsible for the speckle field) and the circumstellar objects by relying on a coronagraphic image formation model. MEDUSAE exploits the spectral diversity provided by multispectral data. In order to In order to refine the inversion strategy and probe the most critical parameters, I applied MEDUSAE on a simulated data set generated with the model used in the inversion. To investigate further the impact of the discrepancy between the image model used and the real images, I applied the method on realistic simulated images. At last, I applied MEDUSAE on real data and from the preliminary results obtained, I identified the important input required by the method and proposed leads that could be followed to make this algorithm operational to process on-sky data.
|
37 |
Mesure de front d'onde post-coronographique à haute précision pour l'imagerie à haut contraste : appplication sol et espace / Post-coronographique wave-front sensing for high contrast imaging : ground and space based applications.Paul, Baptiste 29 September 2014 (has links)
L'observation directe des exoplanètes est rendue difficile par l'énorme contraste entre la planète et l'étoile autour de laquelle elle gravite, ainsi que la faible séparation angulaire entre ces deux corps. Un tel niveau de contraste aussi proche de l'étoile être atteint en couplant l'imagerie à haute résolution angulaire et la coronographie, qui atténue le flux en provenance de l'étoile ; les performances ultimes d'un instrument d'imagerie à haut contraste sont alors limitées par ses aberrations quasi-statique. Au cours de cette thèse a été conçu un ASO plan focal dédié à la calibration des aberrations quasi-statiques dans les systèmes d'imagerie à haut contraste. Cet ASO, baptisé COFFEE, permet d'estimer les aberrations en amont et en aval du coronographe à partir d'images coronographiques acquises en plan focal différant d'une phase de diversité connue introduite en amont du coronographe. Au cours de cette thèse, COFFEE a été conçu et validé par simulations numérique et démontré expérimentalement sur banc. L'identification de plusieurs facteurs limitant la précision de l'estimation des aberrations a ensuite induit une modification du formalisme sur lequel repose COFFEE pour l'adapter à l'estimation d'aberrations de hautes fréquences spatiales avec une précision nanométrique. Cette version hauts ordres de COFFEE a été utilisée avec succès sur l'instrument SPHERE, où la compensation des aberrations estimées par COFFEE a permis d'optimiser le contraste. Enfin, une nouvelle méthode de compensation a été développée pour permettre d'atteindre de très hauts niveaux de contraste sur le détecteur scientifique. / Performing an exoplanet direct detection means being able to image an object as faint as an extra-solar planet very close to its parent star. After compensation of the turbulence by the XAO loop and most of the star light removed by a coronagraph, the ultimate limitation of high contrast imaging systems lies in its quasi-static aberrations that creates a residual signal which limit the achievable contrast on the scientific detector. To increase the achievable contrast on the detector, these aberrations must be compensated for, ideally using focal plane data recorded from the scientific detector to avoid differential aberrations. The aim of this thesis was to develop a focal-plane wavefront sensor (WFS) dedicated to the estimation of quasi-static aberrations in high contrast imaging systems. This WFS, called COFFEE, estimates the aberrations both upstream and downstream of the coronagraph using coronagraphic focal plane images that differ from a known diversity aberrations introduced upstream of the coronagraph. During this research work, COFFEE has been developed, tested using numerical simulations and demonstrated on an in-house bench. Considering the limitations of the estimation accuracy, COFFEE's formalism has then been modified to allow it to estimate high frequencies aberrations with nanometric precision. This extended version of COFFEE has been successfully used on SPHERE to optimize the contrast on the scientific detector of the instrument using COFFEE in a dedicated compensation process. Lastly, a new compensation method has been developed in order to reach very high contrast levels on the scientific detector.
|
38 |
Caractérisation des disques de débris par imagerie directe et haute résolution angulaire : les performances de NaCo et SPHERE / Characterisation of debris discs in direct imaging and high angular resoltion : the performance of NaCo and SPHEREMilli, Julien 23 September 2014 (has links)
Les vingt-cinq dernières années ont connu une véritable révolution dans notre connaissance des systèmes planétaires avec plus de 1800 planètes extrasolaires connues à ce jour. L'étude observationnelle des disques de débris constitue l'approche proposée dans ce travail de thèse pour éclairer les processus de formation et d'évolution des systèmes planétaires. Ces disques circumstellaires sont constitués de particules de poussière générées par des collisions de petits corps appelés planétésimaux, en orbite autour d'une étoile de la séquence principale. La lumière stellaire qu'elles diffusent représente une observable particulièrement riche en informations sur l'architecture du système, mais difficile d'accès en raison du contraste élevé et de la faible séparation angulaire avec leur étoile. Le développement récent de nouveaux instruments à haut contraste équipés d'optique adaptative extrême représente un formidable potentiel pour l'étude de ces systèmes. Cette thèse se place dans le cadre de ces nouveaux développements et porte sur la caractérisation des disques de débris grâce à deux instruments qui équipent le VLT (Very Large Telescope) : NaCo et SPHERE (Spectro Polarimetric High contrast Exoplanet REsearch). NaCo est en opération depuis plus de 10 ans et a connu plusieurs améliorations successives. SPHERE a été conçu et développé dans la même période, testé intensivement en laboratoire en 2013 et est actuellement en cours de vérification opérationnelle sur le télescope. Le caractère novateur de ce travail consiste à associer à l'étude des propriétés physiques des disques de débris, une expertise instrumentale poussée pour tirer le meilleur profit des observations. La première partie vise à développer et caractériser des méthodes de réduction de données innovantes adaptées aux observations de disques en lumière diffusée et au comportement de l'instrument. En particulier les atouts, performances et biais des techniques d'imagerie différentielle angulaire, polarimétrique et de soustraction de référence sont quantifiés. Ces méthodes sont appliquées, dans une seconde partie, à l'étude et la caractérisation de deux prototypes de disques de débris entourant les étoiles beta Pictoris et HR 4796A. Elles permettent une analyse poussée de la morphologie de ces disques et révèlent de nouvelles asymétries, interprétées en terme de perturbateurs gravitationnels ou de propriétés de diffusion de la lumière par la poussière. Enfin une évaluation prospective des performances attendues et observées avec l'instrument SPHERE est détaillée dans la dernière section, basée sur des simulations et des mesures en laboratoire ou sur le ciel. Une comparaison avec NaCo révèle les points forts de SPHERE avant de conclure sur les questions scientifiques auxquelles les observations de disques de débris avec SPHERE pourront apporter des réponses. / Over the last two and a half decades, the discovery of more than 1800 exoplanets has been a major breakthrough in our understanding of planetary systems. To shed light on the formation and evolution processes of such systems, I have chosen an observational approach based on the study of debris discs. These circumstellar discs are composed of dust particles constantly generated by collisions of small rocky bodies called planetesimals, orbiting a main-sequence star. The stellar light they scatter can be studied from the Earth and reveal a wealth of information on the architecture of the system. These observations are challenging because of the high contrast and the small angular separation between the disc and the star. The recent developments of new high-contrast instruments with extreme adaptive optic systems are therefore bringing new expectations for the study of these systems and set the framework of this PhD thesis. My work aims at characterising debris discs thanks to two instruments installed on the Very Large Telescope: NaCo and SPHERE (Spectro Polarimetric High contrast Exoplanet REsearch). NaCo has been in operation for more than a decade and has undergone many improvements. SPHERE has been designed and assembled in the same period, was intensively tested in laboratory in 2013, and is currently being commissioned on the telescope. The innovative approach of this PhD work is to combine the study of debris discs with strong instrumental expertise to get the best science results from the observations. The first part of the study aims at developing innovative data reduction techniques adapted to the observations of discs in scattered light and to the behaviour of the instrument. I quantify in particular the performances, advantages, and biases of the angular, polarimetric and reference-star differential imaging technique. In a next step, I apply those techniques to characterise two prototypes of debris discs, around the stars beta Pictoris and HR 4796A. A detailed analysis of the morphology is carried out, which reveals new asymmetries interpreted in terms of gravitational perturbers or of dust scattering properties. Lastly, I detail the expected and measured performances of SPHERE, from simulations, laboratory and on-sky measurements. A comparison with NaCo reveals the assets of SPHERE and I conclude with the scientific questions SPHERE will be able to answer with new debris disc observations.
|
39 |
Numerical Methods for Darcy Flow Problems with Rough and Uncertain DataHellman, Fredrik January 2017 (has links)
We address two computational challenges for numerical simulations of Darcy flow problems: rough and uncertain data. The rapidly varying and possibly high contrast permeability coefficient for the pressure equation in Darcy flow problems generally leads to irregular solutions, which in turn make standard solution techniques perform poorly. We study methods for numerical homogenization based on localized computations. Regarding the challenge of uncertain data, we consider the problem of forward propagation of uncertainty through a numerical model. More specifically, we consider methods for estimating the failure probability, or a point estimate of the cumulative distribution function (cdf) of a scalar output from the model. The issue of rough coefficients is discussed in Papers I–III by analyzing three aspects of the localized orthogonal decomposition (LOD) method. In Paper I, we define an interpolation operator that makes the localization error independent of the contrast of the coefficient. The conditions for its applicability are studied. In Paper II, we consider time-dependent coefficients and derive computable error indicators that are used to adaptively update the multiscale space. In Paper III, we derive a priori error bounds for the LOD method based on the Raviart–Thomas finite element. The topic of uncertain data is discussed in Papers IV–VI. The main contribution is the selective refinement algorithm, proposed in Paper IV for estimating quantiles, and further developed in Paper V for point evaluation of the cdf. Selective refinement makes use of a hierarchy of numerical approximations of the model and exploits computable error bounds for the random model output to reduce the cost complexity. It is applied in combination with Monte Carlo and multilevel Monte Carlo methods to reduce the overall cost. In Paper VI we quantify the gains from applying selective refinement to a two-phase Darcy flow problem.
|
40 |
Coronographie à masque adaptatif pour imagerie et détection à haute dynamique / Adaptive Mask Coronagraph for High Dynamic Range Imaging and DetectionBourget, Pierre 05 December 2014 (has links)
L’imagerie à très haute dynamique s’applique à de nombreux domaines de recherche en astronomie et astrophysique. Cette problématique observationnelle est abordée sur plusieurs fronts par de nombreuses techniques complémentaires : coronographie, interferométrie, optique adaptative, controle de front d’onde et discrimination des speckles. La combinaison de celles ci permet d’atteindre un haut contraste avec pour ultime objectif l’imagerie d’exoplanètes et l’étude de l’environnement stellaire. Le travail présenté dans ce manuscrit se focalise sur la coronographie et plus particulièrement sur l’optimisation active du procedé d’occultation en fonction du contexte observationnel.La première partie de cette recherche traite de l’observation d’objets résolus par le développement d’un masque focal de Lyot de diamètre variable. La deuxième partie s’applique à étendre le concept du masque focal adaptatif au masque de phase de type Roddier pour l’observation de l’environnement proche d’objets non résolus. L’utilisation des propriétés des cristaux liquides permet de réaliser un déphasage par rotation de polarisation et une modulation de transmission à l’extérieur du masque. Cette modulation permet un controle actif d’optimisation de l’interférence pour une adéquation du masque au contexte observationnel : longueur d’onde, morphologie d’image et défauts intrinsèques au masque, agitation atmosphérique. La dernière partie de ce manuscrit ébauche de nouvelles perspectives quant à la possibilité d’une imagerie à haut contraste. La modulation temporelle de phase transmise par un masque focal adaptatif est mise à profit par l’utilisation des méthodes de détection synchrone. / High contrast imaging of extra-solar planets and environments of bright astro- physical objects in general, such as stars, active galactic nuclei or objects of the Solar System is a challenging task. Different approaches are needed if the bright region to occult is optically resolved or not. We present the Adaptive Mask concept, observations on sky and numerical simulations show the usefulness of the proposed methods to optimize the efficiency of the coronagraphs for optically resolved or non resolved objects. Accessing small IWA is considered as an edge as it provides substantial scientific and technical advantages. One of the difficulties of accessing small IWA is that coronagraphs become very sensitive to low-order aberrations such as tip-tilt. Our original approach aims at integrating the small IWA capability and the mitigation of sensitivity to low-order aberrations within the coronagraph itself. Our concept is applicable to both low and high Strehl regimes, corresponding to current and next generation AO systems. The adaptive coronagraph can adapt dynamically, in quasi real time, to adjust to the observing conditions to deliver a stable and optimized contrast at the science image level. The mask adaptability both in size, phase and amplitude also compensates for manufacturing errors of the mask itself, and potentially for chromatic effects. The mask adaptability concept using a local phase modulation in the focal plane allows synchronous modulation for high dynamic range synchronous detection of a faint target immersed in a background. The coherence of the speckles with the central star is used to discriminate them from proper companions.
|
Page generated in 0.0347 seconds