• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Developing Precipitation Hardenable High Entropy Alloys

Gwalani, Bharat 08 1900 (has links)
High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys as a candidate system. The composition gradient has been achieved from CrCuFeNi2 to Al1.5CrCuFeNi2 over a length of ~25 mm, deposited using the laser engineered net shaping process from a blend of elemental powders. With increasing Al content, there was a gradual change from an fcc-based microstructure (including the ordered L12 phase) to a bcc-based microstructure (including the ordered B2 phase), accompanied with a progressive increase in microhardness. Based on this combinatorial assessment, two promising fcc-based precipitation strengthened systems have been identified; Al0.3CuCrFeNi2 and Al0.3CoCrFeNi, and both compositions were subsequently thermo-mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (γ′) and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale γ′ precipitates. Furthermore, precipitation of bcc based ordered phase B2 in Al0.3CoCrFeNi can further strengthen the alloy. Fine-tuning the microstructure by thermo-mechanical treatments achieved a wide range of mechanical properties in the same alloy. The Al0.3CoCrFeNi HEA exhibited ultimate tensile strength (UTS) of ~250 MPa and ductility of ~65%; a UTS of ~1100 MPa and ductility of ~30%; and a UTS of 1850 MPa and a ductility of 5% after various thermo-mechanical treatments. Grain sizes, precipitates type and size scales manipulated in the alloy result in different strength ductility combinations. Henceforth, the alloy presents a fertile ground for development by grain boundary strengthening and precipitation strengthening, and offers very high activation energy of grain growth aptly suitable for high-temperature applications.
12

Deformation Mechanisms and Microstructure Evolution in HfNbTaTiZr High Entropy Alloy during Thermo-mechanical Processing at Elevated Temperatures / HfNbTaTiZrハイエントロピー合金の高温加工熱処理における変形機構と組織形成

RAJESHWAR, REDDY ELETI 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21767号 / 工博第4584号 / 新制||工||1714(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 乾 晴行, 教授 安田 秀幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
13

The Phase composition and microstructure of AlχCoCrFeNiTi alloys for the development of high-entropy alloy systems

Lindner, Thomas, Löbel, Martin, Mehner, Thomas, Dietrich, Dagmar, Lampke, Thomas 26 June 2017 (has links) (PDF)
Alloying aluminum offers the possibility of creating low-density high-entropy alloys (HEAs). Several studies that focus on the system AlCoCrFeNiTi differ in their phase determination. The effect of aluminum on the phase composition and microstructure of the compositionally complex alloy (CCA) system AlxCoCrFeNiTi was studied with variation in aluminum content (molar ratios x = 0.2, 0.8, and 1.5). The chemical composition and elemental segregation was measured for the different domains in the microstructure. The crystal structure was determined using X-ray diffraction (XRD) analysis. To identify the spatial distribution of the phases found with XRD, phase mapping with associated orientation distribution was performed using electron backscatter diffraction. This made it possible to correlate the chemical and structural conditions of the phases. The phase formation strongly depends on the aluminum content. Two different body-centered cubic (bcc) phases were found. Texture analysis proved the presence of a face-centered cubic (fcc) phase for all aluminum amounts. The hard η-(Ni, Co)3Ti phase in the x = 0.2 alloy was detected via metallographic investigation and confirmed via electron backscatter diffraction. Additionally, a centered cluster (cc) with the A12 structure type was detected in the x = 0.2 and 0.8 alloys. The correlation of structural and chemical properties as well as microstructure formation contribute to a better understanding of the alloying effects concerning the aluminum content in CCAs. Especially in the context of current developments in lightweight high-entropy alloys (HEAs), the presented results provide an approach to the development of new alloy systems.
14

Processamento e caracterizações de ligas Al-Ti-V-Zr-Nb e Al-Ti-V-Cr-Nb (ligas com elementos multiprincipais) para aplicação aeroespacial / Processing and characterization of Al-Ti-V-Zr-Nb and Al-Ti-V-Cr-Nb alloys (multi-principal elements alloys) for aerospace application

Moraes Junior, José Mauro 21 June 2018 (has links)
Foram estudadas MPEAs com diferentes composições químicas, das famílias Al-Ti-V-Zr-Nb e Al-Ti-V-Cr-Nb, visando desenvolver uma liga com propriedades interessantes para aplicação aeroespacial. As ligas foram produzidas em um forno a arco laboratorial, sob atmosfera de argônio. As primeiras ligas caracterizadas foram da composição equimolar de ambas famílias, mas não apresentaram microestrutura com solução sólida monofásica depois do tratamento térmico de homogeneização (1200°C/24h). Após ajustes na composição química duas ligas foram consideradas promissoras na caracterização microestrutural, após homogeneização, BZr7 e BCr8. Para avaliar a estabilidade microestrutural ambas foram expostas a alta temperatura por longo período de tempo (700ºC/168h), e ambas apresentaram pequena fração de segunda fase após esta exposição térmica. A dureza da BZr7 e da BCr8, após exposição térmica, foi de 3,46 e 4,91 GPa, respectivamente. Ambas foram laminadas a 1000 °C, encapsuladas em tubo de aço inoxidável austenítico para evitar oxidação, mas apenas a BZr7 apresentou conformabilidade, sendo a BCr8 não utilizada nos testes subsequentes. A BZr7 exposta termicamente apresentou, na temperatura ambiente, tensão limite de escoamento, em compressão, de 1250 MPa. A tensão limite de escoamento se manteve alta em temperaturas elevadas, sendo 1080, 720 e 690 MPa nas temperaturas de 600, 700 e 800 °C, respectivamente. A massa específica é de 6,34 g/cm3, que originou tensões de escoamento específicas de 197,2 kPa.m3/kg na temperatura ambiente, e 170,3, 113,6 e 108,8 kPa.m3/kg nas temperaturas de 600, 700 e 800 °C, respectivamente, resultados bem melhores que das três ligas convencionais usadas como referência neste trabalho, Ti6Al4V, Ti&beta;21s e Inconel 625. Além de boa resistência em compressão a liga apresentou boa ductilidade na temperatura ambiente (&epsilon; = 38%). Apenas a MPEA refratária AlNbTiVZr0,5, publicada por Stepanov et al. (2015d) e Yurchenko et al. (2017), apresentou combinação simultânea de alta resistência e boa ductilidade acima da liga BZr7 na temperatura ambiente. Apesar dos bons resultados de propriedades mecânicas, a liga apresentou baixa resistência à oxidação, tornando necessário revestimento para aplicações a elevadas temperaturas. / MPEAs with different chemical compositions, based in Al-Ti-V-Zr-Nb and Al-Ti-V-Cr-Nb families, were explored, aiming to develop an alloy with interesting properties for aerospace application. The alloys were produced in a laboratory arc furnace, with argon atmosphere. The equimolar composition of both families were the first characterized alloys, but did not exhibit single-phase solid solution microstructure after homogenization heat treatment (1200 °C/24h). After adjustments in the chemical composition two alloys were considered promising in the microstructural characterization after homogenization, BZr7 and BCr8. To evaluate the microstructural stability both alloys were exposed to high temperature for long period of time (700ºC/168h), and both presented small fraction of second phase after this exposure heat treatment. The microhardness of BZr7 and BCr8 alloys, after thermal exposure, was 3.46 and 4.91 GPa, respectively. Both were rolled at 1000 ° C, after encapsulation in austenitic stainless steel tube to avoid oxidation, but only BZr7 showed formability, than BCr8 was not considered for subsequent tests. The BZr7 alloy, after thermal exposure, exhibited 1250 MPa of yield stress at ambient temperature. The yield stress remained high at elevated temperatures, being 1080, 720 and 690 MPa at temperatures of 600, 700 and 800 ° C, respectively. BZr7 density is 6.34 g/cm3, resulting in a specific yield stress of 197.2 kPa.m3/kg, at room temperature, and 170.3, 113.6 and 108.8 kPa.m3/kg at temperatures 600, 700 and 800 °C, respectively, better results than the three conventional alloys tested in this work, Ti6Al4V, Ti&beta;21s and Inconel 625. In addition to good compressive yield stress, the alloy showed good ductility at room temperature (&epsilon; = 38%). Only the refractory MPEA AlNbTiVZr0.5, published by Stepanov et al. (2015d) and Yurchenko et al. (2017), showed a simultaneous combination of high yield stress and good ductility, above the BZr7 alloy, at room temperature. Despite the good results of mechanical properties, the BZr7 alloy showed low oxidation resistance, so coating is required for high temperature applications.
15

Metal Matrix Composites Prepared by Powder Metallurgy Route / Metal Matrix Composites Prepared by Powder Metallurgy Route

Moravčík, Igor January 2017 (has links)
Ve všeobecnosti, poznatky o design slitin, jejich výrobě a výběru legujúcich prvků sú omezené na slitiny s jedním základním prvkem. Tento fakt ale výrazně limituje možnosti a volnost výběru prvků pro dosáhnuti speciálních vlastností a mikrostruktur. V poslední dekádě se ukázalo, že materiálová věda a inženýrství nejsou ještě zdaleka prozkoumané v důsledku objevu nové třídy materiálů nazvané vysoko entropické slitiny (HEA high entropy alloys). Jejich objev upoutal pozornost vědecké komunity. Základní koncept pro jejich design je, že namísto jednoho, nebo dvou základních prvků obsahují minimálně 5 prvků v podobných atomových koncentracích. V posledních letech se objevila skupina materiálů odvozená od HEA, nazvaná slitiny so střednou entropii (MEA medium entropy alloys). Na rozdíl od HEA ale obsahují 3, nebo 4 prvky. Táto práce je věnovaná studiu přípravy a charakterizaci HEA, MEA a jejich kompozitů s pomocí metod práškové metalurgie. V této práci byli dohromady zkoumány tři kompozice: AlCoCrFeNiTi0.5, Co1.5Ni1.5CrFeTi0.5 a CoCrNi, kompozity s kovovou matricí (MMC metal matrix composites) vyztužené částicemi B4C s CoCrNi jako matricí. Hloubková mikrostrukturní a mechanická analýza těchto materiálů byla provedena pomoví metod rastrovací a transmisní elektronové mikroskopie spojené s tahovými a ohybovými zkouškami. V průběhu celé studie se objevovaly problémy s kontaminací kyslíkem, co se projevilo vznikem značného množství oxidů v připravených materiálech. U Slitiny AlCoCrFeNiTi0.5 byla naměřena tvrdost přesahující 800 HV. Její houževnatost ale byla velice omezena. V její mikrostruktuře byly identifikovány částice in-situ TiC v důsledku přítomnosti organického, anti-aglomeračního činidla (metanolu) v mlecí misce. Tato reakce může být použita v budoucnu k přípravě MMC se záměrnou disperzí TiC. Na druhé straně, slitina CoCrNi ukázala vysoké hodnoty tažnosti (26%) a meze pevnosti přes 1000 MPa. Mikrostruktura obsahovala majoritní FCC fázi s BCC precipitáty. Tahle slitina byla z důvodu vysoké tažnosti zvolena pro přípravu kompozitu s výztuží B4C. V průběhu slinování ale došlo k reakci mezi přítomným Cr a B4C, které výsledkem byl Cr5B3 borid. Tento kompozit mel pevnost v tahu 1400 MP a extrémne jemnozrnnou strukturu. Celková tažnost ale klesla na 1.9 %. Slitina AlCoCrFeNiTi0.5, která mela strukturu složenou jen z FCC tuhého roztoku dosáhla nejlepší kombinaci mechanických vlastností s pevností přesahující 1300 MPa a dostatečnou tažností 4%. Prášková metalurgie se ukázala jako vhodná metoda pro přípravu HEA a MEA slitin a jejich kompozitů, s dobrou kombinací pevnosti a tažnosti. Tato metoda dovoluje měnit mikrostrukturní parametry připravených materiálů jednoduchou úpravou parametrů procesu.
16

Influence of Titanium on Microstructure, Phase Formation and Wear Behaviour of AlCoCrFeNiTix High-Entropy Alloy

Löbel, Martin, Lindner, Thomas, Mehner, Thomas, Lampke, Thomas 18 July 2018 (has links)
The novel alloying concept of high-entropy alloys (HEAs) has been the focus of many recent investigations revealing an interesting combination of properties. Alloying with aluminium and titanium showed strong influence on microstructure and phase composition. However, detailed investigations on the influence of titanium are lacking. In this study, the influence of titanium in the alloy system AlCoCrFeNiTix was studied in a wide range (molar ratios x = 0.0; 0.2; 0.5; 0.8; 1.0; 1.5). Detailed studies investigating the microstructure, chemical composition, phase composition, solidification behaviour, and wear behaviour were carried out. Alloying with titanium showed strong influence on the resulting microstructure and lead to an increase of microstructural heterogeneity. Phase analyses revealed the formation of one body-centred cubic (bcc) phase for the alloy without titanium, whereas alloying with titanium caused the formation of two different bcc phases as main phases. Additional phases were detected for alloys with increased titanium content. For x ≥ 0.5, a minor phase with face-centred cubic (fcc) structure was formed. Further addition of titanium led to the formation of complex phases. Investigation of wear behaviour revealed a superior wear resistance of the alloy AlCoCrFeNiTi0.5 as compared to a bearing steel sample.
17

High-Strain Rate Spall Strength Measurement of a CoCrFeMnNi High-Entropy Alloy

Andrew J Ehler (14052888) 03 November 2022 (has links)
<p>  </p> <p>This work explored the dynamic behavior and failure mechanisms of an additively manufactured high-entropy alloy (HEA) when subjected to high-strain rate shock impacts. A laser-induced projectile impact testing (LIPIT) setup was used to study the dynamic behavior of the Cantor alloy CoCrFeMnNi samples manufactured using a directed-energy deposition technique. HEA flyers were accelerated by a pulse laser to velocities up to 1 km/s prior to impact with lithium fluoride glass windows. A photon Doppler velocimetry (PDV) system recorded the velocity of the flyer during the acceleration and subsequent impact. From this velocity profile, the Hugoniot coefficient and sound speed of the HEA samples were determined.</p> <p><br></p> <p>Upon determination of key shock parameters, spallation occurring due to shock was analyzed. Using the same LIPIT and PDV systems as the earlier testing, aluminum flyers of various thicknesses were accelerated into HEA samples. The back-surface velocity profiles of the HEA samples showed a characteristic “pullback” caused by the interaction of the tensile stress waves indicative of spall occurrence in the material. The magnitude of this pullback and the material properties determined in the first experiments allow for the measurement of spall strength at various strain-rates. This data is compared to previous data looking at similar HEAs manufactured using traditional methods. A comparison of this data showed that the spall strength of the HEA samples was equivalent to that of similar alloys but at significantly higher strain rates. As an increased strain-rate tends to result in increased spall strengths, further examination was needed to determine the reasons for this decreased spall strength in the AM samples.</p> <p><br></p> <p>Post-shock specimen recovery allowed for the failure mechanisms behind the spallation to be observed. Scanning electron microscope (SEM) images of the cross-section of the samples showed ductile fracture and void growth outside of the predicted spall region. Further imaging using energy dispersive spectroscopy (EDS) showed the presence of potentially chromium-oxide deposits in regions outside of the predicted spall plane. It is hypothesized that these regions created nucleation points about which spallation occurred. Thus, to achieve spall strength in AM HEAs equivalent to strengths in traditionally-casted alloys, the AM sample must be refined to reduce the occurrence of these deposits and voids.  </p>
18

Characterizing Structure of High Entropy Alloys (HEAs) Using Machine Learning

Reimer, Christoff 13 December 2023 (has links)
The irradiation of crystalline materials in environments such as nuclear reactors leads to the accumulation of micro and nano-scale defects with a negative impact on material properties such as strength, corrosion resistance, and dimensional stability. Point defects in the crystal lattice, the vacancy and self-interstitial, form the basis of this damage and are capable of migrating through the lattice to become part of defect clusters and sinks, or to annihilate themselves. Recently, attention has been given to HEAs for fusion and fission components, as some materials of this class have shown resilience to irradiation-induced damage. The ability to predict defect diffusion and accelerate simulations of defect behaviour in HEAs using ML techniques is consequently a subject that has gathered significant interest. The goal of this work was to produce an unsupervised neural network capable of learning the interatomic dynamics within a specific HEA system from MD data in order to create a KMC type predictor of defect diffusion paths for common point defects in crystal systems such as the vacancy and self-interstitial. Self-interstitial defect states were identified and purified from MD datasets using graph-isomorphism, and a proof-of-concept model for the HEA environment was used with several interaction setups to demonstrate the feasibility of training a GCN to predict vacancy defect transition rates in the HEA crystalline environment.
19

Laser Additive Manufacturing of Magnetic Materials

Mikler, Calvin V. 08 1900 (has links)
A matrix of variably processed Fe-30at%Ni was deposited with variations in laser travel speeds as well and laser powers. A complete shift in phase stability occurred as a function of varying laser travel speed. At slow travel speeds, the microstructure was dominated by a columnar fcc phase. Intermediate travel speeds yielded a mixed microstructure comprised of both the columnar fcc and a martensite-like bcc phase. At the fastest travel speed, the microstructure was dominated by the bcc phase. This shift in phase stability subsequently affected the magnetic properties, specifically saturation magnetization. Ni-Fe-Mo and Ni-Fe-V permalloys were deposited from an elemental blend of powders as well. Both systems exhibited featureless microstructures dominated by an fcc phase. Magnetic measurements yielded saturation magnetizations on par with conventionally processed permalloys, however coercivities were significantly larger; this difference is attributed to microstructural defects that occur during the additive manufacturing process.
20

Surface Degradation Behavior of Bulk Metallic Glasses and High Entropy Alloys

Ayyagari, Venkata A 12 1900 (has links)
In this study, the surface degradation behavior was studied for typical examples from bulk metallic glasses (BMGs), metallic glass composites (MGCs) and high entropy alloys (HEAs) alloy systems that are of scientific and commercial interest. The corrosion and wear behavior of two Zr-based bulk metallic glasses, Zr41.2Cu12.5Ni10Ti13.8Be22.5 and Zr57Cu15.4Ni12.6Al10Nb5, were evaluated in as-cast and thermally relaxed states. Significant improvement in corrosion rate, wear behavior, and friction coefficient was seen for both the alloys after thermal relaxation. Fully amorphous structure was retained with thermal relaxation below the glass transition temperature. This improvement in surface properties was explained by annihilation of free volume, the atomic scale defects in amorphous metals resulting from kinetic freezing. Recently developed MGCs, with in situ crystalline ductile phase, demonstrate a combination of mechanical properties and fracture behavior unseen in known structural metals. The composites showed higher wear rates but lower coefficient of friction compared to monolithic amorphous glasses. No tribolayer formation was seen for the composites in sharp contrast to that of the monolithic metallic glasses. Corrosion was evaluated by open circuit potential (OCP) analysis and potentiodynamic polarization. Site-specific corrosion behavior was studied by scanning vibration electrode technique (SVET) to identify formation of galvanic couples. Scanning kelvin probe microscope was used to map elecropositivity difference between the phases and linked to wear/corrosion behavior. Phases with higher elecropositivity were more susceptible to surface degradation. Wear and corrosion synergy in marine environment was evaluated for two high entropy alloys (HEAs), CoCrFeMnNi and Al0.1CoCrFeNi. Between the two alloys, Al0.1CoCrFeNi showed better wear resistance compared to CoCrFeMnNi in dry and marine conditions due to quicker passivation, a higher magnitude of polarization resistance and significantly larger pitting resistance.

Page generated in 0.0647 seconds