• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Epigenetic regulations in cell wall degradation and regeneration in Oryza sativa

Tan, Feng 06 August 2011 (has links)
It is well known that chromatin components are key players in establishing and maintaining spatial and temporal gene expression in plants, however, little is known about the epigenetic regulation on cell wall degradation and regeneration. This study aimed to 1) investigate the global proteome and phosphoproteome of rice chromatin, and 2) characterize changes in chromatin components and chromatin structure associated with cell wall degradation and regeneration, and 3) characterize the differentially regulated proteins and eventually explore the mechanism. In this dissertation, we examine proteins copurified with chromatin using both 2-DE gel and shotgun approaches from rice (Oryza sativa) suspension cells. Nine hundred seventy-two distinct protein spots were resolved on 2-DE gels and 509 proteins were identified by MALDI-MS/MS following gel excision, these correspond to 269 unique proteins. When the chromatin copurified proteins are examined using shotgun proteomics, a large number of histone variants in addition to the four common core histones were identified. Furthermore, putative phosphoproteins copurified with chromatin were examined using Pro-Q Diamond phosphoprotein stain and followed by MALDI-MS/MS. Our studies provided new insights into the chromatin composition in plants. To study the epigenetic regulation of the cell wall degradation and regeneration, we examined cellular responses to the enzymatic removal of the cell wall in rice suspension cells using proteomic approaches. We found that removal of cell wall stimulates cell wall synthesis from multiple sites in protoplasts instead of from a single site as in cytokinesis. Microscopy examination and chromatin decondensation assay further showed that removal of the cell wall is concomitant with substantial chromatin reorganization. Histone post-translational modification studies using both Western blots and isotope labeling assisted quantitative mass spectrometry analyses revealed substantial histone modification changes, particularly H3K18AC and H3K23AC, are associated with the degradation and regeneration of the cell wall. Labelree comparative proteome analyses further revealed that chromatin associated proteins undergo dramatic changes upon removal of the cell wall, particularly cytoskeleton, cell wall metabolism, and stress-response proteins. This study demonstrates that cell wall removal is associated with substantial chromatin change and may lead to stimulation of cell wall synthesis using a novel mechanism.
2

Investigating the inhibitor and substrate diversity of the JmjC histone demethylases

Schiller, Rachel Shamo January 2016 (has links)
Epigenetic control of gene expression by histone post-translational modifications (PTMs) is a complex process regulated by proteins that can 'read', 'write' or 'erase' these PTMs. The histone lysine demethylase (KDM) family of epigenetic enzymes remove methyl modifications from lysines on histone tails. The Jumonji C domain (JmjC) family is the largest family of KDMs. Investigating the scope and mechanisms of the JmjC KDMs is of interest for understanding the diverse functions of the JmjC KDMs in vivo, as well as for the application of the basic science to medicinal chemistry design. The work described in this thesis aimed to biochemically investigate the inhibitor and substrate diversity of the JmjC KDMs, it led to the identification of new inhibitors and substrates and revealed a potential combinatorial dependence between adjacent histone PTMs. Structure-activity relationship studies gave rise to an n-octyl ester form of IOX1 with improved cellular potency and selectivity towards the KDM4 subfamily. This compound should find utility as a basis for the development of JmjC inhibitors and as a tool compound for biological studies. The rest of this thesis focused on the biochemical investigations of potential substrates and inhibitors for KDM3A, a JmjC demethylase with varied physiological functions. Kinetic characterisation of reported KDM3A substrates was used as the basis for evaluations of novel substrates and inhibitors. Further studies found TCA cycle intermediates to be moderate co-substrate competitive inhibitors of KDM3A. Biochemical investigations were carried out to study potential protein-protein interactions of KDM3A with intraflagellar transport proteins (IFTs), non-histone proteins involved in the formation of sperm flagellum. Work then addressed the exploration of novel in vitro substrates for KDM3 (KDM3A and JMJD1C) mediated catalysis, including: methylated arginines, lysine analogues, acetylated and formylated lysines. KDM3A, and other JmjC KDMs, were found to catalyse novel arginine demethylation reaction in vitro. Knowledge gained from studies with unnatural lysine analogues was utilised to search for additional novel PTM substrates for KDM3A. These results constitute the first evidence of JmjC KDM catalysed hydroxylation of an Nε-acetyllysine residue. The H3 K4me3 position seems to be required for acetyllysine substrate recognition, implying a combinatorial effect between PTMs. Preliminary results provide evidence that JMJD1C, a KDM3 protein previously reported to be inactive, may catalyse deacetylation in vitro. An additional novel reaction, observed with both KDM3A and JMJD1C, is deformylation of N<sup>ε</sup>-formyllysine residues on histone H3 fragment peptides. Interestingly, H3 K4 methylation was also observed to enhance the apparent deformylation of both KDM3A and JMJD1C catalysed reactions. Overall, findings in this thesis suggest that the catalytic activity of JmjC KDMs extends beyond lysine demethylation. In a cellular context, members of the KDM3 subfamily might provide a regulatory link between methylation and acylation marks. Such a link will further highlight the complex relationships between histone PTMs and the epigenetic enzymes that regulate them. The observed dependency of H3 K9 catalysis on H3 K4 methylation adds another layer of complexity to the epigenetic regulation by histone PTMs.
3

Modifications de la chromatine associées à la sénescence cellulaire / Chromatin modifications associated with cellular senescence

Contrepois, Kévin 03 July 2012 (has links)
La sénescence cellulaire est une réponse à un stress des cellules de mammifère caractérisée par un arrêt durable du cycle cellulaire. Celle-ci peut être déclenchée par un dysfonctionnement des télomères, des stress génotoxiques et l’activation d’oncogènes. La sénescence constitue une puissante ligne de défense contre le développement de cancers et intervient aussi dans le vieillissement. Les cellules en sénescence réorganisent leur génome par l’assemblage en hétérochromatine sous forme de SAHFs (senescence-associated heterochromatin foci). Nous avons mis en évidence que la désacétylation globale de H4-K16Ac par la désacétylase SIRT2 est impliquée dans l’assemblage de l’hétérochromatine en sénescence. De plus, nous avons identifié une accumulation de variants d’histones H2A et H2B spécifiquement dans des cellules en sénescence présentant des dommages persistants à l’ADN. Ces variants d’histone pourraient avoir des fonctions spécifiques dans ces cellules et pourraient représenter un biomarqueur du vieillissement in vivo.Mes travaux apportent des éléments pour la compréhension des rôles de l’information épigénétique dans la sénescence cellulaire. / Cellular senescence is a stress response of mammalian cells characterized by a stable cell proliferation arrest. It can be triggered by telomere dysfunction, genotoxic stress and oncogene activation. Cellular senescence acts as a natural barrier against cancer development and is involved in ageing. Senescent cells reorganize their genome by the assembly of chromatin into senescence-associated heterochromatin foci (SAHF). We showed that SIRT2-mediated global deacetylation of H4-K16Ac is involved in heterochromatin assembly in senescence. Moreover, we identified the accumulation with time of specific H2A and H2B variants in senescence triggered by persistent DNA damage signaling. These histone variants could have specific functions in senescent cells and could be a useful ageing biomarker in vivo.This work provides novel insights into chromatin modification and epigenetic regulation in cellular senescence.
4

Quantitative profile of lysine methylation and acetylation of histones by LC-MS/MS

Gallardo Alcayaga, Karem Daniela 23 March 2017 (has links)
Histone post-translational modifications (PTMs), as the histone code assumes, are related with regulation of gene transcription, an important mechanism of cells in the differentiation process. Many PTMs are simultaneously present in histone proteins, and changes in the PTM stoichiometric ratios can have several effects, like changes in the chromatin structure leading to a transcriptionally active or repressive state. Significant progresses were made to map variations of histone PTMs by mass spectrometry (MS), and although many protocols were developed there are still some drawbacks. Incomplete and side reactions were identified, which can directly affect the quantification of histone PTMs, because both (incomplete and side reactions) can be misinterpreted as endogenous histone post translational modifications. Therefore, a protocol for derivatization of histones with no noticeable undesired reactions (<10%) was required. In this thesis a new chemical modification methodology is presented, which allows the improvement of sequence coverage by acylation with propionic anhydride of lysine residues and N-terminal (free ε- and α- amino groups) and trypsin digestion. more than 95% of complete reaction was achieved with the new derivatization methodology. This strategy (chemical derivatization of histones), in combination with bottom-up MS approach, allows the quantification of lysine methylation (Kme) and acetylation (Kac) in histones from Saccharomyces cerevisiae (S.cerevisiae), mouse embryonic stem cells (mESCs) and human cell lines. The results showed histone H3 PTM pattern as the most variable profile regarding histone Kme and Kac across the three different organisms and experimental conditions. Therefore, it was concluded that quantification of H3 PTM pattern can be used to examine changes in chromatin states when cells are subjected to any kind of perturbation.
5

Characterization of histone post-translational modification using reversed-phase high performance liquid chromatography and fourier transform ion cyclotron resonance mass spectrometry

Zhang, Liwen 01 October 2003 (has links)
No description available.
6

Impact de l'acclimatation embryonnaire à la chaleur sur des modifications post-traductionnelles des histones chez le poulet / Impact of embryonic heat thermal manipulation on histone post-translational modifications in broilers

David, Sarah-Anne 12 December 2017 (has links)
L’altération de l’environnement périnatal peut impacter à long terme l’expression des gènes notamment par le biais de modifications épigénétiques. Une stratégie pour accroitre la thermotolérance des poulets de chair, sensibles à la chaleur en fin d’élevage (J35) est la thermo-manipulation embryonnaire (TM). Lors d’un coup de chaleur à J35, les modifications d’expression de gènes observées chez les poulets TM pourraient être liées à une altération de l’épigénome induite lors de l’embryogenèse et persistante au cours du développement. Cette thèse s’intéresse à deux modifications post-traductionnelles des histones (MPTH) décrites pour être modulées par des variations thermiques : H3K27Me3 et H3K4Me3. Afin d’étudier ces MPTH sans a priori à J35, nous avons mis au point les techniques d’immunoprécipitation de la chromatine suivie de séquençage à haut débit dans deux tissus : l’hypothalamus et le muscle. Nos travaux montrent que le traitement semble impacter principalement l’épigénome de l’hypothalamus, en particulier au niveau de la marque H3K4me3, en modulant des voies liées à la morphogenèse et la réponse hormonale. / Perinatal environment changes may alter gene expression throughout life via epigenetic modifications. A strategy to improve thermal tolerance of heat-sensitive chickens is a thermalmanipulation during embryogenesis (TM). During a heat challenge at the end of the rearing period (D35), modifications of gene expression have been reported in thermally-manipulated chickens. These alterations could be linked to epigenetic modifications induced during the TM that persist throughout life. This work focused on two histone post-translational modifications (HPTM): H3K27me3 and H3K4me3. We adjusted two methods of chromatin immunoprecipitation to conduct a whole genome study of these HPTM at D35, in the hypothalamus and skeletal muscle. We demonstrated that the TM has a major impact in the hypothalamus, especially on H3K4me3. These alterations seem to modulate the hypothalamic morphogenesis and its response to hormones, therefore possibly contributing to better adaptive capacities of TM chickens.

Page generated in 0.2655 seconds