• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Clinical Pharmacology of MS-275, A Histone Deacetylase Inhibitor

Acharya, Milin R. 01 January 2005 (has links)
The goal of this escalating single-dose phase I research study was to determine the safety, tolerability, pharmacokinetics, pharmacodynamics as well as in vitro metabolism and plasma protein binding of MS-275, a novel histone deacetylase inhibitor, in patients with solid tumors and lymphomas. A validated LC/MS assay was developed to quantitate MS-275 in plasma, human liver microsomes and urine. The pharmacokinetic (PK) evaluation was done using a non-compartmental approach. In-vitro plasma protein binding profile of MS-275 was characterized by a validated micro-equilibrium dialysis method. In vitro phase I and phase II hepatic metabolism of MS-275 were evaluated using human liver microsomes. A correlative covariate analysis was performed in an effort to explain the wide inter-individual variability among patients.Results from the study demonstrate that the validated LC-MS assay is specific, accurate, precise and sensitive. MS-275 demonstrates a substantial inter-individual PK variability in systemic exposure and clearance; exposures increase in near-proportion, while peak concentrations increase more than-proportionally with an increase in dose. Mean apparent oral clearance (CL/F) is independent of dose and exhibits apparent dose-independent PK behavior over the studied dose range. Oral absorption is highly variable. MS-275 has a 50-fold longer half-life in humans compared to pre-clinical species. PK/PD analysis showed significant correlation between occurrence of DLT and higher systemic exposures. Although there was an increase in the acetylation of histone H3 and H4 over time, preliminary analysis showed no significant correlation between PK parameters and change in % histone acetylation after 24 hours. MS-275 is moderately bound to plasma proteins. Hepatic phase I and II metabolic pathways are only minor routes of elimination, and MS-275 is neither a substrate for liver-specific organic anion transporting proteins, OATP1B1 and OATP1B3, nor a substrate for gastrointestinal efflux transporters ABCB1 (P-gp) or ABCG2. No significant correlation was found between CL/F and demographic, body measures and other clinical covariates, and inter-patient variability in CL/F remained similar in magnitude even after correcting dose for body surface area (BSA) or other body measures. BSA is not a significant predictor of MS-275 PK, and flat-fixed dosing can be used in the future.
12

Histone Deacetylase Inhibitor MS-275 Inhibits Neuroblastoma Cell Growth by Inducing Cell Cycle Arrest, Apoptosis, Differentiation and by Targeting its Tumor Stem Cell Population

Tsui, Micky Ka Hon 16 February 2010 (has links)
Objective: MS-275, a phase trialed histone deacetylase inhibitor will be characterized for its ability reduce neuroblastoma (NB) viability and to target the tumor stem cell (TSC) population in neuroblastoma. Methods: Ability of MS-275 to reduce NB growth is characterized using a tumorigenic NB N-type cell line that has high differentiation potential. TSC enriched side population from NB and a reference teratocarcinoma cell line was analyzed as a model of TSC. The potential of MS-275 to modulate functional characteristics and markers of TSC was also investigated. Results: MS-275 induces a G1 cell cycle arrest, the intrinsic apoptosis pathway in NB and can potentially differentiate NB into a more terminal phenotype. NB TSC-like population is reduced following MS-275 treatment by the targeting of their self-renewal and drug pumping ability. Conclusions: By targeting both the NB and its TSC population, MS-275 has therapeutic potential for neuroblastoma. This warrants further in-vivo investigations.
13

Histone Deacetylase Inhibitor MS-275 Inhibits Neuroblastoma Cell Growth by Inducing Cell Cycle Arrest, Apoptosis, Differentiation and by Targeting its Tumor Stem Cell Population

Tsui, Micky Ka Hon 16 February 2010 (has links)
Objective: MS-275, a phase trialed histone deacetylase inhibitor will be characterized for its ability reduce neuroblastoma (NB) viability and to target the tumor stem cell (TSC) population in neuroblastoma. Methods: Ability of MS-275 to reduce NB growth is characterized using a tumorigenic NB N-type cell line that has high differentiation potential. TSC enriched side population from NB and a reference teratocarcinoma cell line was analyzed as a model of TSC. The potential of MS-275 to modulate functional characteristics and markers of TSC was also investigated. Results: MS-275 induces a G1 cell cycle arrest, the intrinsic apoptosis pathway in NB and can potentially differentiate NB into a more terminal phenotype. NB TSC-like population is reduced following MS-275 treatment by the targeting of their self-renewal and drug pumping ability. Conclusions: By targeting both the NB and its TSC population, MS-275 has therapeutic potential for neuroblastoma. This warrants further in-vivo investigations.
14

Concomitant Delivery of Histone Deacetylase Inhibitor, MS-275, Enhances the Therapeutic Efficacy of Adoptive T Cell Therapy in Advanced Stage Solid Tumours

Brown, Dominique January 2021 (has links)
Despite the remarkable success of adoptive T cell therapy in the treatment of melanoma and hematological malignancies, therapeutic capacity in a broad range of solid tumours is impaired due to immunosuppressive events that render tumour-specific T cells unable to persist and kill transformed cells. To address some of the limitations of ACT in solid tumours, our laboratory has developed a therapeutic modality utilizing oncolytic virus, which expresses a tumour-associated antigen, known as an oncolytic viral vaccine (OVV), in combination with tumour specific central memory T cells. With this therapeutic approach (ACT), we can achieve robust in vivo expansion of transferred cells resulting in the complete and durable tumour regression in multiple solid murine tumour models. However, we demonstrate that the curative potential is lost when the tumour stage and burden increase as expanded transferred cells differentiate to a dysfunctional state resulting in the progressive decline in the tumour-specific CD8+ T cell response. Thus, we believe that restoring the T cell response in late-stage tumours will lead to enhanced curative potential of ACT in late-stage tumours. We have previously shown that HDACi, MS-275, can enhance the therapeutic capacity of a T cell-based therapy in an aggressive brain tumour model. In addition, concomitant delivery of MS-275 with ACT ensures durable cures through immunomodulatory mechanisms. Strikingly, concomitant delivery of MS-275, a class 1 histone deacetylase inhibitor (HDACi), with ACT in late-stage tumours completely restores the transferred T cell response to similar levels observed in early-stage tumours resulting in the complete regression of advance-stage tumours. Furthermore, MS-275 enhanced the proliferative capacity and tumour-specific cytotoxic function of transferred cells, independently of tumour stage, type and mouse strain. Interestingly, we did not observe a complete reversal of T cell dysfunction, but rather observed that MS-275 conferred unique properties to T cells as the expression of some markers typically associated with T cell dysfunction was enhanced in addition to persistence and proliferation capacity. Moreover, concomitant delivery of MS-275 also restored the therapeutic capacity of endogenously primed tumour-specific CD8+ T cells expanded by an OVV in late-stage tumours, demonstrating the potential for general use for MS-275 in T cell-based therapies. Our data suggests the use of HDACi may potentiate T cell-based immunotherapies to overcome tumour-mediated T cell dysfunction in advanced stage solid tumours. / Thesis / Master of Science in Medical Sciences (MSMS)
15

Improved Anticancer Activities of a New Pentafluorothio-Substituted Vorinostat-Type Histone Deacetylase Inhibitor

Goehringer, Nils, Peng, Yayi, Nitzsche, Bianca, Biermann, Hannah, Pradhan, Rohan, Schobert, Rainer, Herling, Marco, Höpfner, Michael, Biersack, Bernhard 08 May 2023 (has links)
The development of new anticancer drugs is necessary in order deal with the disease and with the drawbacks of currently applied drugs. Epigenetic dysregulations are a central hallmark of cancerogenesis and histone deacetylases (HDACs) emerged as promising anticancer targets. HDAC inhibitors are promising epigenetic anticancer drugs and new HDAC inhibitors are sought for in order to obtain potent drug candidates. The new HDAC inhibitor SF5-SAHA was synthesized and analyzed for its anticancer properties. The new compound SF5-SAHA showed strong inhibition of tumor cell growth with IC50 values similar to or lower than that of the clinically applied reference compound vorinostat/SAHA (suberoylanilide hydroxamic acid). Target specific HDAC inhibition was demonstrated by Western blot analyses. Unspecific cytotoxic effects were not observed in LDH-release measurements. Pro-apoptotic formation of reactive oxygen species (ROS) and caspase-3 activity induction in prostate carcinoma and hepatocellular carcinoma cell lines DU145 and Hep-G2 seem to be further aspects of the mode of action. Antiangiogenic activity of SF5-SAHA was observed on chorioallantoic membranes of fertilized chicken eggs (CAM assay). The presence of the pentafluorothio-substituent of SF5-SAHA increased the antiproliferative effects in both solid tumor and leukemia/lymphoma cell models when compared with its parent compound vorinostat. Based on this preliminary study, SF5-SAHA has the prerequisites to be further developed as a new HDAC inhibitory anticancer drug candidate.
16

Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives

Jenke, Robert, Reßing, Nina, Hansen, Finn K., Aigner, Achim, Büch, Thomas 26 April 2023 (has links)
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond “classic” oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
17

Modulation of Folate Receptor Beta for Drug Targeting in Acute Myelogenous Leukemia

Qi, Huiling January 2005 (has links)
No description available.
18

Pluripotent Stem Cells of Embryonic Origin : Applications in Developmental Toxicology

Jergil, Måns January 2009 (has links)
General toxicity evaluation and risk assessment for human exposure is essential when developing new pharmaceuticals and chemicals. Developmental toxicology is an important part of this risk assessment which consumes large resources and many laboratory animals. The prediction of developmental toxicity could potentially be assessed in vitro using embryo-derived pluripotent stem cells for lead characterization and optimization. This thesis explored the potential of short-time assays with pluripotent stem cells of embryonic origin using toxicogenomics. Three established pluripotent stem cell lines; P19 mouse embryonal carcinoma (EC) cells, R1 mouse embryonic stem (mES) cells, and SA002 human embryonic stem (hES) cells were used in the studies. Valproic acid (VPA), an antiepileptic drug which can cause the neural tube defects spina bifida in human and exencephaly in mouse, was used together with microarrays to investigate the global transcriptional response in pluripotent stem cells using short-time exposures (1.5 - 24 h). In addition to VPA, three closely related VPA analogs were tested, one of which was not teratogenic in mice. These analogs also differed in their ability to inhibit histone deacetylase (HDAC) allowing this potential mechanism of VPA teratogenicity to be investigated. The results in EC cells indicated a large number of genes to be putative VPA targets, many of which are known to be involved in neural tube morphogenesis. When compared with data generated in mouse embryos, a number of genes emerged as candidate in vitro markers of VPA-induced teratogenicity. VPA and its teratogenic HDAC inhibiting analog induced major and often overlapping deregulation of genes in mES cells and hES cells. On the other hand, the two non-HDAC inhibiting analogs (one teratogenic and one not) had only minor effects on gene expression. This indicated that HDAC inhibition is likely to be the major mechanism of gene deregulation induced by VPA. In addition, a comparison between human and mouse ES cells revealed an overlap of deregulated genes as well as species specific deregulated genes.
19

Epigenetic regulations by insulin and histone deacetylase inhibitors of the insulin signaling pathway in muscle / Régulation épigénétiques par l’insuline et un inhibiteur des histones déacétylases sur la voie de signalisation de l’insuline dans le muscle

Chriett, Sabrina 03 October 2016 (has links)
L’émergence et le développement des maladies métaboliques est sous le contrôle de multiples facteurs génétiques et environnementaux. Le diabète et la résistance à l’insuline sont des maladies métaboliques caractérisées par des défauts dans la sécrétion de l’insuline ou son utilisation périphérique, ou les deux. L’insuline est l’hormone clé de l’utilisation du glucose, et régule également transcriptionnellement et épigénétiquement l’expression des gènes.En travaillant sur le muscle, l’implication de l’épigénétique dans la régulation de l’expression des gènes de la voie de l’insuline a été mis en évidence. L’hexokinase 2 (HK2) est régulée par l’insuline et participe au métabolisme glucidique. Le rôle de l’épigénétique y est démontré avec l’augmentation de l’acétylation des histones autour du site d’initiation de la transcription (SIT) de HK2 et l’accumulation d’une isoforme permissive des histones, H2A.Z. Ces deux phénomènes sont le signe d’une transcription permissive.Nous avons ensuite étudié le rôle de l’acétylation des histones dans les régulations amenées par l’insuline dans les myotubes L6. Nous avons utilisé le butyrate, un inhibiteur des histones deacetylase (HDACi), dans un contexte d’insulino-résistance induite par une lipotoxicité. Le butyrate a en partie restauré la sensibilité à l’insuline visible au niveau des phosphorylations de la PKB (protein kinase B) et de la MAPK (Mitogen-activated protein kinase), inhibées par le traitement au palmitate. Le butyrate a augmenté l’expression de l’ARNm et de la protéine d’IRS1. La surexpression génique d’IRS1 est épigénétique-dépendante car liée à une augmentation de l’acétylation des histones au SIT d’IRS1.L’ensemble de ces résultats démontre l’existence d’un lien entre les modifications épigénétique et l’action de l’insuline. Cela suggère qu’une intervention pharmacologique sur la machinerie épigénétique pourrait être un moyen d’améliorer le métabolisme, et l’insulino-résistance / Diabetes and insulin resistance are metabolic diseases characterized by altered glucose homeostasis due to defects in insulin secretion, insulin action in peripheral organs, or both. Insulin is the key hormone for glucose utilization and regulates gene expression via transcriptional and epigenetic regulations.We determined the epigenetic implications in the regulation of expression of insulin signaling pathway genes. Hexokinase 2 (HK2) is known to be upregulated by insulin and directs glucose into the glycolytic pathway. In L6 myotubes, we demonstrated that insulin-induced HK2 gene expression rely on epigenetic changes on the HK2 gene, including an increase in histone acetylation around the transcriptional start site (TSS) of the gene and an increase in the incorporation of the histone H2A.Z isoform – a histone variant of transcriptionally active chromatin. Both are epigenetic modifications compatible with increased gene expression.To elucidate the role of histone acetylation in the regulation of insulin signaling and insulin-dependent transcriptional responses in L6 myotubes, we investigated the effects of butyrate, an histone deacetylase inhibitor (HDACi), in a model of insulin resistance induced by lipotoxicity. Butyrate partly alleviated palmitate-induced insulin resistance by ameliorating insulin-induced PKB (protein kinase B) and MAPK (Mitogen-activated protein kinase) phosphorylations, downregulated with exposure to palmitate. Butyrate induced an upregulation of IRS1 gene and protein expression. The transcriptional upregulation of IRS1 was proven to be epigenetically regulated, with butyrate promoting increased histone acetylation around the TSS of the IRS1 gene.These results support the idea of the existence of a link between epigenetic modifications and insulin action. Pharmacological targeting of the epigenetic machinery might be a new approach to improve metabolism, especially in the insulin resistant condition.Key words: Muscle, insulin resistance, epigenetic, chromatin, histone acetylation, histone deacetylase inhibitor (HDACi), butyrate, palmitate
20

Overcoming frataxin gene silencing in Friedreich's ataxia with small molecules: studies on cellular and animal models

Rai, Myriam 05 January 2010 (has links)
Friedreich’s ataxia (FRDA) is an inherited recessive disorder characterized by progressive neurological disability and heart disease. It is caused by a pathological intronic hyperexpansion of a GAA repeat in the FXN gene, encoding the essential mitochondrial protein frataxin. At the homozygous state, the GAA expansion induces a heterochromatin state with decreased histone acetylation and increased methylation, resulting in a partial deficiency of frataxin expression. This was established in cells from FRDA patients. We showed that the same chromatin changes exist in a GAA based mouse model, KIKI, generated in our laboratory. Furthermore, treatment of KIKI mice with a novel Histone Deacetylase Inhibitor (HDACi), 106, a pimelic diphenylamide that increases frataxin levels in FRDA cell culture, restored frataxin levels in the nervous system and heart of KIKI mice and induced histone hyperacetylation near the GAA repeat. As shown by microarrays, most of the differentially expressed genes in KIKI were corrected towards wild type. In an effort to improve the pharmacological profile of compound 106, we synthesized more compounds based on its structure and specificity. We characterized two of these compounds in FRDA patients’ peripheral blood lymphocytes and in the KIKI mouse model. We observed a sustained frataxin upregulation in both systems, and, by following the time course of the events, we concluded that the effects of these compounds last longer than the time of direct exposure to HDACi. Our results support the pre-clinical development of a therapeutic approach based on pimelic diphenylamide HDACis for FRDA. Laboratory tools to follow disease progression and assess drug efficacy are needed in a slowly progressive neurodegenerative disease such as FRDA. We used microarrays to characterize the gene expression profile in peripheral lymphocytes from FRDA patients, carriers and controls. We identified gene expression changes in heterozygous, clinically unaffected GAA expansion carriers, suggesting that they present a biochemical phenotype, consistent with data from animal models of frataxin deficiency. We identified a subset of genes changing in patients as a result of pathological frataxin deficiency establishing robust gene expression changes in peripheral lymphocytes. These changes can be used as a biomarker to monitor disease progression and potentially assess drug efficacy. To this end, we used he same methodology to characterize the gene expression profiles in peripheral lymphocytes after treatment with pimelic diphenylamide HDACi. This treatment had relevant effects on gene expression on peripheral patients’ blood lymphocytes. It increased frataxin levels in a dose-dependent manner, and partially rescued the gene expression phenotype associated with frataxin deficiency in the tested cell model, thus providing the first application of a biomarker gene set in FRDA. / Doctorat en sciences biomédicales / info:eu-repo/semantics/nonPublished

Page generated in 0.1061 seconds