Spelling suggestions: "subject:"distory off mathematics"" "subject:"distory off amathematics""
11 |
THE EFFECTS OF STUDYING THE HISTORY OF THE CONCEPT OF FUNCTION ON STUDENT UNDERSTANDING OF THE CONCEPTReed, Beverly M. 13 December 2007 (has links)
No description available.
|
12 |
História da Matemática no ensino fundamental : usos em sala de aula pelo professor de matemática da rede municipal de Aracaju/SE / HISTORY OF MATHEMATICS IN ELEMENTARY SCHOOL: Uses classroom math teacher at the municipal Aracaju / Se.Guimarães, Marcos Denilson 16 April 2011 (has links)
This article presents the results of a survey whose aim was to identify whether or how the Mathematics teachers of municipal schools in Aracaju make use of the History of Mathematics to deal with mathematical contents on the final years of Junior High School. In order to accomplish such a task, first it was identified the subjects through the intersection between the names of the students who attended the subject History of Education at Universidade Federal de Sergipe - UFS, and the names of the teachers who had taught at municipal schools in 2010. From a quantity of 37 students who met the above criteria, 19 semi structured interviews were made with the group. In addition, two professors of the subject History of Mathematics, offered for the graduates in Mathematics at UFS, were also interviewed. In this case, the aim was to identify the historical contents presented in the course plans in an attempt to establish the same theoretical bases in relation to the contents and the way how they were studied by the teachers of the municipal schools in Aracaju. As theoretical foundation, it was adopted the authors: Fauvel (1997) to differentiate between history of mathematics written with initial capitals and lower case with initial Feliciano (2008), Miguel (1997), Miguel e Miorim (2008) about the uses of history of mathematics in the classroom e Valente (2007) to the treatment of sources. Based on the data collected, it is possible to affirm that most teachers use the History of Mathematics in the classroom. In relation to how, the most frequent use is the History of Mathematics as teaching resources, tied to the use as motivation, as curiosity, as explanation of the why. In these cases, the main role performed by the teacher is to present the contents and the historical information. The confirmation of this is in the verbs used, such as: to count, to explain and to cite, considered as indicative that the teachers adopt the model of lecture and the historical information as a form of explaining some why, which contributed to the students to become not only listeners in face of the knowledge which are passed on them. The result of this survey is an indicative that as soon as possible, it should be made an investment on other surveys in order to experiment the use of the History of Mathematics as a teaching methodology in which the historical information is the starting point to teach mathematical contents. / Neste trabalho é apresentado o resultado de uma pesquisa cujo objetivo foi identificar o se e o como professores de Matemática da rede municipal de ensino de Aracaju-SE fazem uso da história da matemática para abordar conteúdos matemáticos nos anos finais do Ensino Fundamental. Para realizar tal empreitada um primeiro passo foi identificar os sujeitos a partir da intersecção entre os nomes dos alunos que cursaram a disciplina História da Matemática na Universidade Federal de Sergipe - UFS e os nomes de professores que em 2010 atuavam na rede municipal de ensino. De um quantitativo de trinta e sete que atendiam ao referido critério foram realizadas dezenove entrevistas semiestruturadas com esses sujeitos. Além disso, foram entrevistados também dois docentes da disciplina História da Matemática, ofertada para os licenciados em Matemática da UFS. Nesse caso, o objetivo era identificar os conteúdos históricos presentes em ementas e em programas do curso, na tentativa de estabelecer um mesmo lastro teórico em relação aos conteúdos e a forma como que foram estudados pelos professores da rede municipal de Aracaju. Como sustentação teórica, foram adotados autores como, Fauvel (1997) para a diferenciação entre história da matemática grafada com iniciais maiúsculas e com iniciais minúsculas, Feliciano (2008), Miguel (1997), Miguel e Miorim (2008) sobre os usos da história da matemática em sala de aula e Valente (2007) para o tratamento das fontes. Com base nos dados coletados é possível afirmar que a maioria dos professores utiliza a história da matemática em sala de aula. Já em relação ao como, o uso mais frequente é a história da matemática como um recurso didático, atrelado à utilização como motivação, como curiosidade, como explicação dos porquês. E nesses casos, o papel predominante exercido pelo professor é o de expositor do conteúdo e das informações históricas. A confirmação dessa constatação está nos verbos utilizados para descrever o uso, a exemplo da presença de verbos como contar, explanar, citar, considerados aqui como indicativos de que os professores adotam o modelo da aula expositiva e as informações históricas como recurso para motivar ou explicar alguns porquês. O que contribui para que os alunos se tornem apenas ouvintes diante do conhecimento que lhes é informado. O resultante desta pesquisa é um indicativo que o mais breve possível deve ser realizado um investimento de outras pesquisas com o intuito de experimentar o uso da história da matemática como uma metodologia de ensino em que as informações históricas sejam o ponto de partida para ensinar conteúdos matemáticos
|
13 |
Speaking of Geometry : A study of geometry textbooks and literature on geometry instruction for elementary and lower secondary levels in Sweden, 1905-1962, with a special focus on professional debatesPrytz, Johan January 2007 (has links)
<p>This dissertation deals with geometry instruction in Sweden in the period 1905-1962. The purpose is to investigate textbooks and other literature used by teachers in elementary schools (ES) and lower secondary schools (LSS) – Folkskolan and Realskolan – connection to geometry instruction. Special attention is given to debates about why a course should be taught and how the content should be communicated.</p><p>In the period 1905-1962, the Swedish school system changed greatly. Moreover, in this period mathematics instruction was reformed in several countries and geometry was a major issue; especially, classical geometry based on the axiomatic method. However, we do not really know how mathematics instruction changed in Sweden. Moreover, in the very few works where the history of mathematics instruction in Sweden is mentioned, the time before 1950 is often described in terms of “traditional”, “static” and “isolation”.</p><p>In this dissertation, I show that geometry instruction in Sweden did change in the period 1905-1962: geometry instruction in LSS was debated; the axiomatic method and spatial intuition were major issues. Textbooks for LSS not following Euclid were produced also, but the axiomatic method was kept. By 1930, these alternative textbooks were the most popular.</p><p>Also the textbooks in ES changed. In the debate about geometry instruction in ES, visualizability was a central concept. </p><p>Nonetheless, some features did not change. Throughout the period, the rationale for keeping axiomatic geometry in LSS was to provide training in reasoning. An important aspect of the debate on geometry instruction in LSS is that the axiomatic method was the dominating issue; other issues, e.g. heuristics, were not discussed. I argue that a discussion on heuristics would have been relevant considering the final exams in the LSS; in order to succeed, it was more important to be a skilled problem solver than a master of proof.</p>
|
14 |
Speaking of Geometry : A study of geometry textbooks and literature on geometry instruction for elementary and lower secondary levels in Sweden, 1905-1962, with a special focus on professional debatesPrytz, Johan January 2007 (has links)
This dissertation deals with geometry instruction in Sweden in the period 1905-1962. The purpose is to investigate textbooks and other literature used by teachers in elementary schools (ES) and lower secondary schools (LSS) – Folkskolan and Realskolan – connection to geometry instruction. Special attention is given to debates about why a course should be taught and how the content should be communicated. In the period 1905-1962, the Swedish school system changed greatly. Moreover, in this period mathematics instruction was reformed in several countries and geometry was a major issue; especially, classical geometry based on the axiomatic method. However, we do not really know how mathematics instruction changed in Sweden. Moreover, in the very few works where the history of mathematics instruction in Sweden is mentioned, the time before 1950 is often described in terms of “traditional”, “static” and “isolation”. In this dissertation, I show that geometry instruction in Sweden did change in the period 1905-1962: geometry instruction in LSS was debated; the axiomatic method and spatial intuition were major issues. Textbooks for LSS not following Euclid were produced also, but the axiomatic method was kept. By 1930, these alternative textbooks were the most popular. Also the textbooks in ES changed. In the debate about geometry instruction in ES, visualizability was a central concept. Nonetheless, some features did not change. Throughout the period, the rationale for keeping axiomatic geometry in LSS was to provide training in reasoning. An important aspect of the debate on geometry instruction in LSS is that the axiomatic method was the dominating issue; other issues, e.g. heuristics, were not discussed. I argue that a discussion on heuristics would have been relevant considering the final exams in the LSS; in order to succeed, it was more important to be a skilled problem solver than a master of proof.
|
15 |
História da matemática: uma disciplina do curso de licenciatura em matemática da Universidade Federal de Juiz de ForaFragoso, Wagner da Cunha 05 April 2011 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-12-19T17:10:10Z
No. of bitstreams: 1
wagnerdacunhafragoso.pdf: 25624087 bytes, checksum: eac70a2f127d8dfc0fc14860c36c3bb3 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-12-22T12:37:00Z (GMT) No. of bitstreams: 1
wagnerdacunhafragoso.pdf: 25624087 bytes, checksum: eac70a2f127d8dfc0fc14860c36c3bb3 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-12-22T12:41:35Z (GMT) No. of bitstreams: 1
wagnerdacunhafragoso.pdf: 25624087 bytes, checksum: eac70a2f127d8dfc0fc14860c36c3bb3 (MD5) / Made available in DSpace on 2016-12-22T12:41:35Z (GMT). No. of bitstreams: 1
wagnerdacunhafragoso.pdf: 25624087 bytes, checksum: eac70a2f127d8dfc0fc14860c36c3bb3 (MD5)
Previous issue date: 2011-04-05 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais / Esta dissertação tem como objetivo analisar a inserção e as transformações ocorridas com a disciplina História da Matemática no currículo do curso de Licenciatura em Matemática da Universidade Federal de Juiz de Fora – UFJF. Na articulação das questões, fizemos uso da história cultural, tratada na especificidade da história da educação matemática. Para produzir a história da disciplina História da Matemática nesse contexto utilizamos como fontes de pesquisa, documentos oficiais que regulam os cursos de Licenciatura em Matemática em território nacional, as atas do Departamento de Matemática da UFJF, depoimentos dos professores regentes da referida disciplina, planos de ensino, trabalhos de alunos, entre outros documentos. As questões que procuramos responder com essa pesquisa são: Como foi introduzida a disciplina de História da Matemática na UFJF? Que transformações essa disciplina sofreu ao longo dos anos? Os resultados apontam para a determinante influência da formação e da atuação em pesquisa dos professores responsáveis pela disciplina nas transformações ocorridas ao longo dos anos. Três enfoques diferenciados se destacam: História da Matemática como um curso de Matemática, como um curso de história do conhecimento matemático e como um curso de história do conhecimento matemático e da matemática escolar. / This study aims to analyze the inclusion of ideas and the changes occurred in the Discipline History of Mathematics in the Undergraduate Mathematics Curriculum of the Federal University of Juiz de Fora - UFJF. In order to articulate the issues, we used cultural history, treated in the specificity of the history of mathematics education. Aiming to provide feedback on the History of Mathematics in this context, we used, as a source for the research, official documents that regulate the undergraduate courses in Mathematics in the national territory, the minutes of the Department of Mathematics at UFJF, teacher's testimonials, lesson plans, student papers, among other documents. The questions we seek to answer with this research are: How was the discipline History of Mathematics introduced at UFJF? Has this discipline undergone transformations over the years? The results indicate the decisive influence of training and research activities of the teachers, in charge of the discipline, on changes over the years. Three different approaches are highlighted: the History of Mathematics as a Course of Mathematics, also as a Course of the History of Mathematical Knowledge, and as a Course of the History of Mathematical Knowledge and Mathematics Education.
|
16 |
Frequency and time domain analysis of networks of interacting processes : what can be achieved from records of short durationAllehiany, Faiza Mohammad January 2012 (has links)
Abstract Recently, there has been increasing interest in investigating the interrelationships among the component stochastic processes of a dynamical system. The applications of these studies are to be found in various fields such as Economics, Neuroscience, Engineering and Neurobiology. Also the determination of the direction of the information flow is one of the important subjects studied widely. These investigations have usually been implemented in the time and frequency domains. Consequently, several mathematical and statistical procedures have been developed to facilitate these analyses. The aim of this thesis is to discuss the relationships between stochastic processes of a relatively short time duration. Specifically, the research concerns the analysis of the electrical activity of the dysfunctional brain, where the available data belong to a right-handed focal epileptic patient. EEG signals are recorded directly from the scalp using numbered electrodes according to the International 10/20 system introduced by Jasper [1958]. The analysis is only performed for processes of the left hemisphere as they represent the dominant hemisphere. Moreover, since each region of the brain is responsible for a special function, we have chosen five processes to represent the five main lobes of the brain; the frontal lobe, the central region, the parietal lobe, the occipital lobe and the temporal lobe. The analyses of these signals are carried out using four spectral density estimation procedures, namely the multivariate autoregressive model of order 2; the average of periodograms of adjacent segments of the single record; the smoothed periodogram approach for the entire record; and the multi-taper method. Thereafter comparisons among the results of these methods are made. The strength of the correlation between signals is measured by coherence and partial coherence functions. Also, the Granger causality concept is implemented for these data in the form of determining the direction of the information flow between these signals using the partial directed coherence (PDC) proposed by Baccala and Sameshima [2001] using the statistical level of significance suggested by Schelter et al.[2005]. The structure of the causal influences produced by the PDC shows that there are statistically significant reciprocal causal effects between processes representing the brain's region, the frontal lobe, the central area, the parietal lobe and the temporal lobe. However, there are two uni-directed causal influence relations, one is between the central area and the occipital lobe and the second one is between the occipital and temporal lobes. The indirect causal influences are detected between these processes throughout the process representing the temporal lobe. Generally, the values of the PDC in the anterior-posterior direction are larger than the values of the PDC in the opposite direction. Also, the causal influences of each process on the temporal lobe process is larger than the causal influences in the opposite direction. The spectral analyses show that the estimated power spectra and coherences of these signals are approximately peak in the delta wave band of frequency [1, 4) Hz. The significant non-zero estimated coherences are captured between the brain's lobes except for the occipital lobe which is uncorrelated with any of the other lobes. The depth of non-zero significant estimated coherences is given by partial coherence, which measures the strength of the estimated coherence between any two processes after removing the linear influence of one or more other processes. For the current data, we found that the depth of correlations depends on the spectral estimation method adopted. For example, the depth of correlation is of order 2 for the method of averaging across periodograms of adjacent segments of the single record and the method of smoothed periodogram of the entire single record and is of order one for the multi-taper method. However, the depth of correlations is unknown for the multivariate autoregressive model of order 2. The comparisons made between the results of the four spectral estimation methods mentioned previously, indicated that MVAR is not sensitive to rapid changes occurring in the signal such as the effect of the notch filter at 60Hz and a calibration signal at 47Hz, while the other three methods exhibited good sensitivity to these changes with different strengths of responses. Furthermore, the smoothed periodogram and the multi-taper methods persistently detect the notch filter effect at 60Hz in the ordinary estimated coherence curves, while the method of averaging across periodograms of adjacent segments of the single record does not.
|
17 |
Contribuições da história da matemática no ensino da relação entre a fração e a notação decimal. / Contributions of the history of mathematics in teaching the relation between fraction and decimal notationPalazzo, Camila Cristina Carvalho 30 April 2019 (has links)
Esta pesquisa foi desenvolvida para propor uma atividade de ensino que relacione a fração com a notação decimal, utilizando da História da Matemática. A questão que permeou essa pesquisa de cunho qualitativo foi: Quais as contribuições da História da Matemática para o ensino da notação decimal no 6º e 7º ano do ensino fundamental? A metodologia utilizada foi a histórico-bibliográfica, também conhecida como estudo documental. Para isso, optou-se por estudar as contribuições que a história traz para a Educação Matemática. Após, foi analisado o conteúdo de números racionais nos currículos oficiais que são os Parâmetros Curriculares Nacionais e a Base Nacional Comum Curricular, além também do Referencial Curricular do material didático do Serviço Social da Indústria (SESI-SP). Após análise do que se espera do currículo de Matemática, especificamente dos números racionais do 6º e 7º ano, foram analisados capítulos de livros didáticos do SESI-SP e 7 livros aprovados pelo Programa Nacional do Livro e Material Didático, que tratam especificamente do conteúdo de transformação de fração para a notação decimal. Fizemos também uma pesquisa para procurar entender mais profundamente os elementos históricos que contribuíram para a relação entre certo tipo de fração e sua notação decimal nos dias atuais, para podermos compreender melhor e poder ensinar melhor esse aspecto da Matemática escolar. Ao final, é apresentada a atividade proposta e como ela pode contribuir para o ensino da relação entre a fração e a notação decimal. / This research was developed to propose a teaching activity that relates the fraction to the decimal notation, using the History of Mathematics. The question that permeated this qualitative research was: What are the contributions of the History of Mathematics to the teaching of decimal notation in the 6th and 7th year of elementary school? The methodology used was the historical-bibliographic, also known as documentary study. For this, it was decided to study the contributions that history brings to Mathematics Education. Afterwards, the content of rational numbers was analyzed in the official curricula that are the National Curricular Parameters and the National Curricular Common Base, as well as the curricular reference of the didactic material of the Social Service of Industry (SESI-SP). After analyzing what is expected of the Mathematics curriculum, specifically the rational numbers of the 6th and 7th grades, we analyzed SESI-SP textbook chapters and 7 books approved by the National Book and Didactic Material Program, which deal specifically with the contents of transformation from fraction to decimal notation. We also did a research to try to understand more deeply the historical elements that contributed to the relationship between a certain type of fraction and its decimal notation in the present day, so we can better understand and be able to better teach this aspect of school mathematics. At the end, the proposed activity is presented and how it can contribute to the teaching of the relation between fraction and decimal notation.
|
18 |
A tensão entre o discreto e o contínuo na história da matemática e no ensino de matemática. / The discrete and the continuous in the history of mathematics and in mathematics educationBrolezzi, Antonio Carlos 17 February 1997 (has links)
Discreto e contínuo são termos que se referem respectivamente a duas das ações básicas na elaboração da Matemática: contar e medir. Neste trabalho examinamos o problema pedagógico que surge da tendência de se abordar os temas de Matemática elementar optando por um ou outro aspecto, sem explorar a interação entre eles. Nossa ideia é que isso se resolve através da administração da tensão conceitual entre essas noções. Trata-se de caminhar com ambas as pernas, a da ideia do discreto e a da continuidade, na construção dos conceitos matemáticos. Este trabalho é baseado na pesquisa em História da Matemática, justificada pela visão do conhecimento como uma rede conceitual, uma rede de significações em permanente transformação. Procuramos assim fazer uso da História para repensar aspectos do ensino de Matemática elementar, especialmente relacionados ao nosso tema: a construção da ideia de Número; o nascimento do Cálculo Diferencial e Integral; as relações entre qualidade/quantidade. Ao final, mostramos exemplos de Oficinas Temáticas para a formação de professores, nas quais procuramos aplicar a abordagem histórica visando administrar o par conceitual discreto/contínuo dentro de assuntos do currículo elementar de matemática. / Discrete and continuous are concepts related respectively to two basic actions in Mathematics: to count and to measure. In this work we examine the pedagogical problem originated in the tendency of approaching elementary Mathematics by making an option between either one or other feature, without exploring the relationship between them. Our idea is that it can be solved by managing the conceptual tension between those notions. It is a matter of getting along with both ideas, the discreteness and the continuity, in the construction of mathematical concepts. The present work is based on Mathematics History research, justified by the image of knowledge as a conceptual net, a net of meanings which always change. We make use of the History to think over certain features of Mathematics elementary teaching specially meaningful to our work: the construction of the idea of Number, the birth of the Differential and Integral Calculus, the relationship between quality and quantity. At last, we show examples of Thematical Workshops to teachers training, in which our aim is to apply the historical approach in order to deal with the conceptual pair discrete/continuous in topics of the mathematical elementary curriculum.
|
19 |
Uma biografia de Eugênio de Barros Raja Gabaglia /Martins, Juliana January 2019 (has links)
Orientador: Marcos Vieira Teixeira / Resumo: O presente trabalho trata-se de uma pesquisa de doutorado que se insere no campo da história da matemática no Brasil. O principal objetivo do estudo foi apresentar uma biografia de Eugênio de Barros Raja Gabaglia, engenheiro, professor de matemática e autor de textos de história da matemática. A investigação ocorreu a partir do material coletado em bibliotecas da cidade do Rio de Janeiro, como a Biblioteca Nacional e a Biblioteca do Clube de Engenharia. Além disso, buscou-se informações no Arquivo Nacional e no NUDOM (Núcleo de Documentação e Memória do Colégio Pedro II), e nos documentos doados pelo acervo pessoal de Elizabeth Pessoa Raja Gabaglia (neta de Eugênio). Outra etapa fundamental para a coleta do material foi o levantamento de notícias em jornais da época por meio da Hemeroteca Digital – Fundação Biblioteca Nacional. A partir do material coletado em diálogo com o referencial teórico adotado, escrevemos sete episódios históricos sobre a vida de Eugênio Gabaglia, em cada um deles elencamos dados biográficos, de modo que a reunião desses episódios resulta em sua trajetória de vida, isto é, sua biografia. O primeiro versa sobre sua obra; o segundo sobre sua relação com o Colégio Pedro II; no terceiro trazemos dados da história dos antepassados de Eugênio dando ênfase à história de uma figura de referência em sua vida: seu pai. No quarto episódio discorremos sobre sua formação na Escola Politécnica; no quinto investigamos sua infância e primeiros estudos. O sexto episód... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The present work deals a doctoral research that is inserted in the field of the history of mathematics in Brazil. The study's aim was to present a Eugênio de Barros Raja Gabaglia's biography, who is an engineer, a professor of mathematics and an author of texts of the history of mathematics. The investigation took place from the data collected in Rio de Janeiro city's libraries, such as the Biblioteca National and the Engineering Club's Library. In addition, information was sought from the Arquivo Nacional and the NUDOM (Documentation and Memory Nucleus of Colégio Pedro II), and from documents donated by the personal collection of Elizabeth Pessoa Raja Gabaglia (Eugenio's granddaughter). Another fundamental step for the data collection was the survey of storys in newspapers of that time through the Digital Library - National Library Foundation. From the data collected in dialogue with the adopted theoretical framework we have written seven historical episodes about the Eugenio Gabaglia's life. In each one of them we have biographical data, so that the set of these episodes results in his life trajectory, in other words, his biography. The first episode is about his academic production; the second is on his conection with the Colégio Pedro II; in the third we bring data from the history of the Eugênio's ancestors emphasizing the story of a reference person to him: his father. In the fourth episode we talk about his Escola Politécnica degree; in the fifth we investigate his chi... (Complete abstract click electronic access below) / Doutor
|
20 |
A arte de contar: uma introdução ao estudo do valor didático da história da matemática / The arte of couting: an introduction to the study of the educational value of the history of mathematicsBrolezzi, Antonio Carlos 24 September 1991 (has links)
Nesta dissertação, apresentamos algumas linhas de pesquisa que podem levar a uma abordagem na qual o próprio conteúdo matemático seja influenciado pelo uso da História da Matemática em sala de aula. Não se trata apenas de ilustrar as aulas de Matemática com histórias que divirtam, como biografias de matemáticos famosos. Nem simplesmente de acrescentar mais conteúdo ao currículo elementar de Matemática, para recheá-lo de referências históricas diretas que de algum modo ajudem a demonstrar a importância ou a beleza do assunto que se quer ensinar. O que pretendemos fazer aqui é contribuir para o estudo de uma utilização muito mais profunda do recurso à História da Matemática. Esse estudo deveria levar em consideração a existência de um encadeamento lógico característico na construção do conhecimento científico e outro na sistematização, na formalização desse conhecimento. A nosso ver, a ordem lógica mais adequada para o ensino de Matemática não é a do conhecimento matemático sistematizado, mas sim aquela que revela a Matemática enquanto Ciência em construção. O recurso à História da Matemática tem, portanto, um papel decisivo na organização do conteúdo que se quer ensinar, iluminando-o, por assim dizer, com o modo de raciocinar próprio de um conhecimento que se quer construir. Essa abordagem constitui-se no cerne desse estudo, embora também façamos referência a outras funções do recurso à História da Matemática. Podemos chamar essa abordagem de Arte de Contar, pois contar em diversas línguas se aplica tanto a contar histórias quanto a contar objetos. Desse modo queremos expressar nossa intenção de contribuir para que não se considerem o ensino da Matemática e a História da Matemática como compartimentos estanques, revelando a existência entre eles de uma relação intrínseca que une o conhecimento matemático construído na História e o reconstruído nas aulas de Matemática. Em síntese, a proposta desse trabalho é servir de introdução ao estudo acerca do uso da História da Matemática enquanto fornecedora dos elementos necessários para a construção de caminhos lógicos tendo em vista a construção original daquele tópico matemático que se quer ensinar, propiciando ao aluno uma visão com significado da totalidade da matéria. A proposta inclui uma caracterização dos meios de se obter conhecimentos sobre História da Matemática através do recurso às fontes históricas e aos vários tipos de livros de História da Matemática. / In this dissertation, we present some lines of research that may lead to an approach in which the mathematical content itself is influenced by the use of the history of mathematics in the classroom. It is not only a matter of illustrating the mathematics classes with fun stories, like biographies of famous mathematicians . Or simply to add more content to the elementary mathematics curriculum, to fill it with direct historical references that somehow help to demonstrate the importance and the beauty of the subject that we want to teach. What we want to do here is to contribute to the study of a much deeper use of the resource to the History of Mathematics . This study should take into account the existence of a characteristic logical sequence in the construction of scientific knowledge and the other in systematization , formalization of this knowledge . In our view , the most appropriate logical order for teaching mathematics is not that of the systematized mathematical knowledge, but one that reveals the Mathematics Science while under construction. The use of history of mathematics, therefore, plays a decisive role in the organization of content that we want to teach , illuminating it , so to speak , with the mode of reasoning of a knowledge they we want to build own . This approach is at the core of this study, although we refer also to other functions of the resource to the History of Mathematics. We call this approach The Art of Counting, since counting in different languages applies to both counting stories and counting objects. Thus we want to express our intention to contribute to not consider the teaching of Mathematics and the History of Mathematics as watertight compartments, revealing the existence among them of an intrinsic relationship that unites the mathematical knowledge constructed in History and reconstructed in Mathematics classes. In summary, the purpose of this study is to serve as an introduction to the study of the use of history of mathematics as a supplier of the elements necessary for the construction of logical paths considering the original construction of that mathematical topic that we want to teach, providing students with a vision with the meaning of the whole of this subject matter. The proposal includes a characterization of the means of obtaining knowledge about the history of mathematics through the use of historical sources and the various books of the History of Mathematics .
|
Page generated in 0.0947 seconds