Spelling suggestions: "subject:"holomorphic functionations"" "subject:"holomorphic functionizations""
31 |
Tipos de holomorfia em espaços de Banach / Holomorphy types on a Banach spacesJatobá, Ariosvaldo Marques 12 August 2018 (has links)
Orientador: Jorge Tulio Mujica Ascui / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-12T04:40:55Z (GMT). No. of bitstreams: 1
Jatoba_AriosvaldoMarques_D.pdf: 617454 bytes, checksum: b1f5fca80565a5a0f7b273ed5238b6ee (MD5)
Previous issue date: 2008 / Resumo: Neste trabalho introduzimos e estudamos os espaços das funções inteiras ?-holomorfas de tipo limitado. Em particular obtemos resultados de dualidade via a transformada de Borel e provamos resultados de existência e aproximação para equações de convolução. Os resultados provados generalizam resultados anteriores deste tipo devido a C. Gupta [21], M. Matos [28] e X. Mujica [32]. Nós estudamos as relações entre o espaço Hb(E; F) das funções inteiras de tipo limitado, o espaço HNb(E; F) das funções inteiras nucleares de tipo limitado, o espaço HPIb(E; F) das funções inteiras Pietsch-integrais de tipo limitado, e o espaço HGIb (E; F) das funções inteiras Grothendieck-integrais de tipo limitado. Estendemos para o caso de funções inteiras resultados de R. Alencar [2] e R. Cilia e J. Gutierrez [10] no caso de polinômios homogêneos. / Abstract: In this work we introduce and study functions of ?-holomorphy type of bounded type. In particular we obtain a duality result via the Borel transform and we prove existence and approximation results for convolution equations. The results we prove generalize previous results of this type due to C. Gupta [21], M. Matos [28] and X. Mujica [32]. We study the relationships among the space Hb(E; F) of entire mappings of bounded type, the space HNb(E; F) of entire mappings of nuclear bounded type, the space HPIb(E; F) of entire mappings of Pietsch integral bounded type, and the space HGIb(E; F) of entire mappings of Grothendieck integral bounded type. We extend to the case of entire mappings several results due to R. Alencar [2] and R. Cilia and J. Gutiérrez [10] in the case of homogeneous polynomials. / Doutorado / Analise Funcional / Doutor em Matemática
|
32 |
Analytic Continuation In Several Complex VariablesBiswas, Chandan 04 1900 (has links) (PDF)
We wish to study those domains in Cn,for n ≥ 2, the so-called domains of holomorphy, which are in some sense the maximal domains of existence of the holomorphic functions defined on them. We demonstrate that this study is radically different from that of domains in C by discussing some examples of special types of domains in Cn , n ≥2, such that every function holomorphic on them extends to strictly larger domains. Given a domain in Cn , n ≥ 2, we wish to construct the maximal domain of existence for the holomorphic functions defined on the given domain. This leads to Thullen’s construction of a domain (not necessarily in Cn)spread overCn, the so-called envelope of holomorphy, which fulfills our criteria. Unfortunately this turns out to beavery abstract space, far from giving us sense in general howa domain sitting in Cn can be constructed which is strictly larger than the given domain and such that all the holomorphic functions defined on the given domain extend to it. But with the help of this abstract approach we can give a characterization of the domains of holomorphyin Cn , n ≥ 2.
The aforementioned characterization is as follows: adomain in Cn is a domain of holomorphy if and only if it is holomorphically convex. However, holomorphic convexity is a very difficult property to check. This calls for other (equivalent) criteria for a domain in Cn , n ≥ 2, to be a domain of holomorphy. We survey these criteria. The proof of the equivalence of several of these criteria are very technical – requiring methods coming from partial differential equations. We provide those proofs that rely on the first part of our survey: namely, on analytic continuation theorems.
If a domain Ω Cn , n ≥ 2, is not a domain of holomorphy, we would still like to explicitly describe a domain strictly larger than Ω to which all functions holomorphic on Ω continue analytically. Aspects of Thullen’s approach are also useful in the quest to construct an explicit strictly larger domain in Cn with the property stated above. The tool used most often in such constructions s called “Kontinuitatssatz”. It has been invoked, without a clear statement, in many works on analytic continuation. The basic (unstated) principle that seems to be in use in these works appears to be a folk theorem. We provide a precise statement of this folk Kontinuitatssatz and give a proof of it.
|
33 |
Familias normais de aplicações holomorfas em espaços de dimensão infinita / Normal families of holomorphic mappings on infinite dimensional spacesTakatsuka, Paula 15 February 2006 (has links)
Orientador: Jorge Tulio Mujica Ascui / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-07T16:44:31Z (GMT). No. of bitstreams: 1
Takatsuka_Paula_D.pdf: 3540981 bytes, checksum: 643e40ac81900cf042cfe1cfb3737b0d (MD5)
Previous issue date: 2006 / Resumo: Este trabalho estende teoremas clássicos da teoria de funções holomorfas de uma variável complexa para espaços localmente convexos de dimensão infinita. Serão dadas várias caracterizações de famílias normais, n¿ao apenas com relação à topologia compacto-aberta, mas também para outras topologias naturais no espaço de aplicações holomorfas. Teoremas de tipo Montel e de tipo Schottky, bem como outros resultados correlatos, ser¿ao estabelecidos em dimensão infinita para as diferentes topologias. Teoremas de limita¸c¿ao universal sobre famílias de funções holomorfas que omitem dois valores distintos ser¿ao formulados para espaços de Banach / Abstract: The present work extends some classical theorems from the theory of holomorphic functions of one complex variable to infinite dimensional locally convex spaces. Several characterizations of normal families are given, not only for the compact-open topology, but also for other natural topologies on spaces of holomorphic mappings. Montel-type and Schottky-type theorems and various related results are established in infinite dimension for these different topologies. Universal boundedness theorems concerning families of holomorphic functions which omit two distinct values are formulated for Banach spaces / Doutorado / Mestre em Matemática
|
34 |
Universality of Composition Operator with Conformal Map on theUpper Half PlaneAlmohammedali, Fadelah Abdulmohsen January 2021 (has links)
No description available.
|
35 |
The Dirichlet operator and its mapping propertiesXiong, Jue 11 July 2019 (has links)
No description available.
|
36 |
Composition Operators on Classes of Holomorphic Functions on Banach SpacesSantacreu Ferra, Daniel 05 September 2022 (has links)
[ES] El objetivo principal de esta tesis es el estudio de diferentes propiedades (principalmente ergódicas) de operadores de composición y de composición ponderados actuando en espacios de funciones holomorfas definidas en un espacio de Banach de
dimensión infinita.
Sea X un espacio de Banach y U un subconjunto abierto. Dada una aplicación
φ : U → U, la acción f 7 → Cφ ( f ) = f ◦ φ define un operador, llamado operador de
composición (y a φ se le llama símbolo del operador). Consideramos este operador
actuando en diferentes espacios de funciones. La filosofía general es intentar caracterizar en cada caso las propiedades de nuestro interés en función de condiciones en φ.
También, dada ψ: U → C, el operador de multiplicación se define como Mψ( f ) = ψ · f
y (con φ como antes), el operador de composición ponderado como Cψ,φ ( f ) = ψ·( f ◦φ)
(en este caso ψ se conoce como el peso o multiplicador del operador). Nuevamente, la
idea es describir propiedades de estos operadores en términos de condiciones sobre φ
y/o ψ. Claramente Cψ,φ = Mψ ◦ Cφ , y tomando φ = idU (la identidad en U) o ψ ≡ 1
(la función constante 1) recuperamos Mψ y Cφ .
Denotamos con B a la bola unidad abierta de X . El espacio de funciones holomorfas
f : B → C se denota H(B). Escribimos Hb(B) para el espacio de funciones holomorfas
en B de tipo acotado y H∞(B) para el espacio de funciones holomorfas y acotadas
en B. Vamos a considerar operadores de composición y de composición ponderados
definidos en cada uno de estos espacios (tomando entonces U = B en la definición).
También consideramos operadores de composición definidos en el espacio vectorial
de polinomios continuos y m-homogéneos (denotado P (m X )). En este caso tomamos
U = X .
La tesis consta de cinco capítulos. En el Capítulo 1 damos las definiciones y resultados básicos necesarios para que el texto sea autocontenido. En el Capítulo 2 tratamos
con operadores de composición ergódicos en media y acotados en potencias definidos en P (m X ). En el Capítulo 3 estudiamos operadores de composición ergódicos
en media y acotados en potencias definidos en H(B), Hb(B) y H∞(B); tratando también el caso particular en que B es la bola de un espacio de Hilbert. En el Capítulo 4
estudiamos la compacidad de operadores de composición ponderados definidos en
H∞(B), así como la acotación, reflexividad, cuándo es Montel y la compacidad (débil) en Hb(B). Finalmente, en el Capítulo 5 obtenemos resultados sobre la acotación
en potencias y ergodicidad en media de operadores de composición ponderados actuando en H(B), Hb(B) y H∞(B); así como sobre compacidad y ergodicidad en media
del operador de multiplicación. / [CA] L’objectiu principal d’aquesta tesi és l’estudi de diferents propietats (principalment
ergòdiques) d’operadors de composició i de composició ponderats actuant en espais
de funcions holomorfes en un espai de Banach de dimensió infinita.
Siga X un espai de Banach i U un subconjunt obert. Donada una aplicació φ : U →
U, l’acció f 7 → Cφ ( f ) = f ◦ φ defineix un operador, anomenat operador de compo-
sició (i φ s’anomena símbol de l’operador). Considerem aquest operador actuant en
diferents espais de funcions. La filosofia general és intentar caracteritzar en cada
cas les propietats del nostre interés en funció de condicions en φ. També, donada
ψ: U → C, l’operador de multiplicació es defineix com a Mψ( f ) = ψ · f i (amb φ com
abans), l’operador de composició ponderat com a Cψ,φ ( f ) = ψ · ( f ◦ φ) (en aquest cas
ψ es coneix com el pes o multiplicador de l’operador). Novament, la idea és descriure
propietats d’aquests operadors en termes de condicions sobre φ i/o ψ. Clarament
Cψ,φ = Mψ ◦ Cφ , i prenent φ = idU (la identitat en U) o ψ ≡ 1 (la funció constant 1)
recuperem Mψ i Cφ .
Denotem per B la bola unitat oberta d’X . L’espai de funcions holomorfes f : B → C
es denota H(B). Escrivim Hb(B) per a l’espai de funcions holomorfes en B de tipus fitat
i H∞(B) per a l’espai de funcions holomorfes i fitades en B. Anem a considerar ope-
radors de composició i de composició ponderats definits en cadascun d’aquests espais
(prenent llavors U = B en la definició). També considerem operadors de composició
definits en l’espai vectorial de polinomis continus i m-homogenis (denotat P (m X )).
En aquest cas prenem U = X .
La tesi consta de cinc capítols. En el Capítol 1 donem les definicions i resultats
bàsics necessaris perquè el text siga autocontingut. En el Capítol 2 tractem amb ope-
radors de composició ergòdics en mitjana i fitats en potències definits en P (m X ). En el
Capítol 3 estudiem operadors de composició ergòdics en mitjana i fitats en potències
definits en H(B), Hb(B) i H∞(B); tractant també el cas particular en que B és la bola
d’un espai de Hilbert. En el Capítol 4 estudiem la compacitat d’operadors de composi-
ció ponderats definits en H∞(B), així com també la fitació, reflexivitat, quan és Montel
i la compacitat (feble) en Hb(B). Finalment, en el Capítol 5 obtenim resultats sobre
la fitació en potències i ergodicitat en mitjana d’operadors de composició ponderats
actuant en H(B), Hb(B) i H∞(B); així com també sobre compacitat i ergodicitat en
mitjana de l’operador de multiplicació. / [EN] The main aim in this thesis is to study different properties (mostly ergodic) of compo-
sition and weighted composition operators acting on spaces of holomorphic functions
defined on an infinite dimensional complex Banach space.
Let X be a Banach space and U some open subset. Given a mapping φ : U → U
the action f 7 → Cφ ( f ) = f ◦ φ defines an operator, called composition operator (and
φ is called the symbol of the operator). We consider this operator acting on different
spaces of functions. The general philosophy is to try to characterise in each case the
properties of our interest in terms of conditions on φ. Also, given ψ: U → C the
multiplication operator is defined as Mψ( f ) = ψ· f and (with φ as above), the weighted
composition operator as Cψ,φ ( f ) = ψ · ( f ◦ φ) (here ψ is called the weight or multiplier
of the operator). Again, the idea is to describe properties of these operators in terms
of conditions on ψ and/or φ. Clearly Cψ,φ = Mψ ◦ Cφ , and taking φ = idU (the identity
on U) or ψ ≡ 1 (the constant function 1) we recover Mψ and Cφ .
We denote the open unit ball of X by B. The space of all holomorphic functions
f : B → C is denoted by H(B). We write Hb(B) for the space holomorphic functions of
bounded type on B, and H∞(B) for the space of bounded holomorphic functions on
B. We are going to consider composition and weighted composition operators defined
on each one of these spaces (taking then U = B in the definition). We also consider
composition operators defined on the vector space of all continuous m-homogeneous
polynomials on X (which is denoted by P (m X )). In this case we take U = X .
The thesis consists of 5 chapters. In Chapter 1 we introduce definitions and ba-
sic results, needed to make the text self-contained. In Chapter 2 we deal with mean
ergodic and power bounded composition operators defined on P (m X ). In Chapter 3
we study mean ergodic and power bounded composition operators defined on H(B),
Hb(B) and H∞(B); considering also the particular case when B is the ball of a Hilbert
space. In Chapter 4 we study compactness of weighted composition operators defined
on H∞(B), as well as boundedness, reflexivity, being Montel and (weak) compactness
on Hb(B). Finally, in Chapter 5 we obtain different results about power bounded-
ness and mean ergodicity of weighted composition operators acting on H(B), Hb(B)
and H∞(B), as well as about compactness and mean ergodicity of the multiplication
operator. / Santacreu Ferra, D. (2022). Composition Operators on Classes of Holomorphic Functions on Banach Spaces [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185235
|
37 |
Ideals and Boundaries in Algebras of Holomorphic FunctionsCarlsson, Linus January 2006 (has links)
<p>We investigate the spectrum of certain Banach algebras. Properties</p><p>like generators of maximal ideals and generalized Shilov boundaries are studied. In particular we show that if the ∂-equation has solutions in the algebra of bounded functions or continuous functions up to the boundary of a domain D ⊂⊂ C<sup>n</sup> then every maximal ideal over D is generated by the coordinate functions. This implies that the fibres over D in the spectrum are trivial and that the projection on Cn of the n − 1 order generalized Shilov boundary is contained in the boundary of D.</p><p>For a domain D ⊂⊂ C<sup>n</sup> where the boundary of the Nebenhülle coincide</p><p>with the smooth strictly pseudoconvex boundary points of D we show that there always exist points p ∈ D such that D has the Gleason property at p.</p><p>If the boundary of an open set U is smooth we show that there exist points in</p><p>U such that the maximal ideals over those points are generated by the coordinate functions.</p><p>An example is given of a Riemann domain, Ω, spread over C<sup>n</sup> where the fibers over a point p ∈ Ω consist of m > n elements but the maximal ideal over p is generated by n functions.</p>
|
38 |
Ideals and boundaries in Algebras of Holomorphic functionsCarlsson, Linus January 2006 (has links)
We investigate the spectrum of certain Banach algebras. Properties like generators of maximal ideals and generalized Shilov boundaries are studied. In particular we show that if the ∂-equation has solutions in the algebra of bounded functions or continuous functions up to the boundary of a domain D ⊂⊂ Cn then every maximal ideal over D is generated by the coordinate functions. This implies that the fibres over D in the spectrum are trivial and that the projection on Cn of the n − 1 order generalized Shilov boundary is contained in the boundary of D. For a domain D ⊂⊂ Cn where the boundary of the Nebenhülle coincide with the smooth strictly pseudoconvex boundary points of D we show that there always exist points p ∈ D such that D has the Gleason property at p. If the boundary of an open set U is smooth we show that there exist points in U such that the maximal ideals over those points are generated by the coordinate functions. An example is given of a Riemann domain, Ω, spread over Cn where the fibers over a point p ∈ Ω consist of m > n elements but the maximal ideal over p is generated by n functions.
|
39 |
The Oka-Weil TheoremKarlsson, Jesper January 2017 (has links)
We give a proof of the Oka-Weil theorem which states that on compact, polynomially convex subsets of Cn, holomorphic functions can be approximated uniformly by holomorphic polynomials. / Vi ger ett bevis av Oka-Weil sats som säger att på kompakta och polynomkonvexa delmängder av Cn kan holomorfa funktioner approximeras likformigt med holomorfa polynom.
|
40 |
Rigidity And Regularity Of Holomorphic MappingsBalakumar, G P 07 1900 (has links) (PDF)
We deal with two themes that are illustrative of the rigidity and regularity of holomorphic
mappings.
The first one concerns the regularity of continuous CR mappings between smooth pseudo convex, finite type hypersurfaces which is a well studied subject for it is linked with the problem of studying the boundary behaviour of proper holomorphic mappings between domains bounded by such hypersurfaces. More specifically, we study the regularity of Lipschitz CR mappings from an h-extendible(or semi-regular) hypersurface in Cn .Under various assumptions on the target hypersurface, it is shown that such mappings must be smooth. A rigidity result for proper holomorphic mappings from strongly pseudo convex domains is also proved.
The second theme dealt with, is the classification upto biholomorphic equivalence of model domains with abelian automorphism group in C3 .It is shown that every model domain i.e.,a hyperbolic rigid polynomial domainin C3 of finite type, with abelian automorphism group is equivalent to a domain that is balanced with respect to some weight.
|
Page generated in 0.1022 seconds