• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 12
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Development of amperometric biosensor with Cyclopentadienylruthenium(ii) thiolato schiff base selfassembled Monolayer (sam) on gold

Ticha, Lawrence Awa 11 1900 (has links)
A novel cyclopentadienylruthenium(II) thiolato Schiff base,[Ru(SC6H4NC(H)C6H4OCH2CH2SMe)(η5-C2H5]2 was synthesized and deposited as a selfassembled monolayer (SAM) on a gold electrode. Effective electronic communication between the Ru(II) centers and the gold electrode was established by electrostatically cycling the Shiff base-doped gold electrode in 0.1 M NaOH from -200 mV to +600 mV. The SAMmodified gold electrode (Au/SAM) exhibited quasi-reversible electrochemistry. The integrity of this electro-catalytic SAM, with respect to its ability to block and electro-catalyze certain Faradaic processes, was interrogated using Cyclic and Osteryoung Square Wave voltammetric experiments. The formal potential, E0', varied with pH to give a slope of about - 34 mV pH-1. The surface concentration, Γ, of the ruthenium redox centers was found to be 1.591 x 10-11 mol cm-2. By electrostatically doping the Au/SAM/Horseradish peroxidase at an applied potential of +700 mV vs Ag/AgCl, a biosensor was produced for the amperometric analysis of hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide. The electrocatalytic-type biosensors displayed typical Michaelis-Menten kinetics with their limits of detection of 6.45 μM, 6.92 μM and 7.01 μM for hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide respectively / Magister Scientiae - MSc
42

Development of amperometric biosensor with cyclopentadienylruthenium (II) thiolato schiff base self-assembled monolayer (SAM) on gold

Ticha, Lawrence Awa January 2007 (has links)
Magister Scientiae - MSc / A novel cyclopentadienylruthenium(II) thiolato Schiff base, [Ru(SC6H4NC(H)C6H4OCH2CH2SMe)(η5-C2H5]2 was synthesized and deposited as a selfassembled monolayer (SAM) on a gold electrode. Effective electronic communication between the Ru(II) centers and the gold electrode was established by electrostatically cycling the Shiff base-doped gold electrode in 0.1 M NaOH from -200 mV to +600 mV. The SAMmodified gold electrode (Au/SAM) exhibited quasi-reversible electrochemistry. The integrity of this electro-catalytic SAM, with respect to its ability to block and electro-catalyze certain Faradaic processes, was interrogated using Cyclic and Osteryoung Square Wave voltammetric experiments. The formal potential, E0', varied with pH to give a slope of about - 34 mV pH-1. The surface concentration, Γ, of the ruthenium redox centers was found to be 1.591 x 10-11 mol cm-2. By electrostatically doping the Au/SAM/Horseradish peroxidase at an applied potential of +700 mV vs Ag/AgCl, a biosensor was produced for the amperometric analysis of hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide. The electrocatalytic-type biosensors displayed typical Michaelis-Menten kinetics with their limits of detection of 6.45 M, 6.92 M and 7.01 M for hydrogen peroxide, cumene hydroperoxide and tert-butylhydroperoxide respectively. / South Africa
43

Characterization and Development of an Enzymatically Signal-Enhanced Lateral Flow Assay Test for HIV Detection Using the P24 Antigen

Pankti Rajesh Thakkar (15354871) 28 April 2023 (has links)
<p>In 2021, an estimated 1.5 million people were diagnosed with HIV globally, increasing the total to 38.4 million people. Approximately 16% of this population were unaware of their infected status and required HIV testing, which is a critical first step in HIV prevention, treatment, and care. Hence, there is a need to develop a rapid, user-friendly, and cost-effective point-of-care test for HIV detection. The time between HIV infection and a detectable host HIV antibody concentration can extend up to 90 days. By incorporating more sensitive testing for the HIV p24 antigen on the virus, the diagnosis lag can be reduced to 17 days. This window could be further shortened by using horseradish peroxidase (HRP) enzyme as a signal enhancement technique. The work herein focuses on developing an enzymatically signal-enhanced lateral flow assay test for the p24 antigen to detect HIV during the acute phase of infection. Conjugation chemistry for the sandwich assay was characterized using DLS and UV-Vis. Dot blots were then used to assess and enhance the functionality of the individual components via a visual color gradient formed by the protein coupled with antibody-conjugated gold nanoparticles. A quantitative analysis was performed using ImageJ software through signal pixel intensity analysis. A limit of detection (LoD) of 6 ng/mL was obtained for the detection of the p24 antigen. This LoD was improved to 0.2 ng/mL by incorporating HRP signal enhancement with the diaminobenzidine substrate. This 30x signal improvement could drive down the LoD even further to improve the sensitivity of the commercial p24 antigen tests. Different fabrication and scalability studies were performed to produce a cost- efficient, fully functional prototype of a paper-based lateral flow device incorporating the signal- enhanced p24 assay. This study serves as a solid foundation to research focused on creating more efficient point-of-care tests that can be used in resource-limited settings to provide early detection of HIV for the 6 million individuals who are currently unaware of their HIV status. </p>
44

Development of electrochemical ZnSe Quantam dots biosensors for low-level detection of 17β-Estradiol estrogenic endocrine disrupting compound

Jijana, Abongile Nwabisa January 2010 (has links)
<p>The main thesis hub was on development of two electrochemical biosensors for the determination of 17&beta / -estradiol: an estrogenic endocrine disrupting compound. Endocronology have significantly shown that the endocrine disruptors contribute tremendously to health problems encountered by living species today, problems such as breast cancer, reproductive abnormalities, a decline in male population most significant to aquatic vertebrates, reduced fertility and other infinite abnormalities recurring in the reproductive system of mostly male species. The first biosensor developed for the detection of 17&beta / -estradiol endocrine disrupting compound / consisted of an electro-active polymeric 3-mercaptoprorionic acid capped zinc selenide quantum dots cross linked to horseradish peroxidase (HRP) enzyme as a bio-recognition element. The second biosensor developed was comprised of cysteamine self assembled to gold electrode, with 3-mercaptopropionic acid capped zinc selenide quantum dots cross linked to cytochrome P450-3A4 (CYP3A4) enzyme in the presence of 1-ethyl-3-(3- dimethylaminopropyl)carbodiimide hydrochloride and succinimide.</p>
45

Barrier function of the Follicle-Associated Epithelium in Stress and Crohn's disease

Keita, Åsa January 2007 (has links)
Crohns sjukdom är en kronisk inflammatorisk tarmsjukdom av okänd orsak. Det tidigaste tecknet på Crohns sjukdom är mikroskopiska sår i det s.k. follikelassocierade epitelet (FAE) som täcker ansamlingar av immunceller i tarmen. FAE är specialiserat för att fånga innehåll från tarmen och transportera det till underliggande immunvävnad. Denna funktion är viktig för att inducera skyddande immunsvar, men den utgör också en ingångsväg för sjukdomsalstrande bakterier. Crohns sjukdom är associerat med ett kraftigt ökat immunsvar mot bakterier, och sjukdomsförloppet kan ändras av stress. Det övergripande syftet med avhandlingen var att studera effekterna av stress på FAE samt att undersöka rollen av FAE vid utvecklingen av tarminflammation, särskilt vid Crohns sjukdom. Inledningsvis studerades effekterna av psykologisk stress på FAE. Stressade råttor uppvisade ökad genomsläpplighet av bakterier efter stress, och passagen var högre i FAE än i vanligt epitel. Efterföljande experiment visade att stressförändringarna i slemhinnan regleras via kortikotropinfrisättande hormon och mastceller. Vidare visade det sig att vasoaktiv intestinal peptid kunde efterlikna stressens effekter på genomsläppligheten, och att detta kunde förhindras genom att blockera mastcellerna. Studier av tunntarmsslemhinna från patienter med icke-inflammatorisk tarmsjukdom och friska kontroller visade en högre passage av bakterier i FAE än i vanligt epitel. Hos patienter med Crohns sjukdom var bakteriepassagen genom FAE betydligt ökad jämfört med kontroller. Resultaten från detta avhandlingsarbete visar att stress kan förändra upptaget av bakterier från tarmen via FAE, med mekanismer som innefattar kortikotropinfrisättande hormon och mastceller. Detta har gett nya kunskaper kring regleringen av slemhinnebarriären. Vidare presenterar denna avhandling nya insikter i sjukdomsuppkomsten vid Crohns sjukdom genom att påvisa en tidigare okänd defekt i barriärfunktionen i FAE. / The earliest observable signs of Crohn’s disease are microscopic erosions in the follicle-associated epithelium (FAE) covering the Peyer’s patches. The FAE, which contains M cells, is specialised in sampling of luminal content and delivery to underlying immune cells. This sampling is crucial for induction of protective immune responses, but it also provides a route of entry for microorganisms into the mucosa. Crohn’s disease is associated with an increased immune response to bacteria, and the disease course can be altered by stress. The overall aim of this thesis was to study the effects of stress on the FAE and elucidate the role of FAE in the development of intestinal inflammation, specifically Crohn’s disease. Initially, rats were submitted to acute and chronic water avoidance stress to study the effects of psychological stress on the FAE. Stressed rats showed enhanced antigen and bacterial passage, and the passage was higher in FAE than in regular villus epithelium (VE). Further, stress gave rise to ultrastructural changes. Subsequent experiments revealed the stress-induced increase in permeability to be regulated by corticotropin-releasing hormone and mast cells. Furthermore, vasoactive intestinal peptide (VIP) mimicked the stress effects on permeability, and the VIP effects were inhibited by a mast cell stabiliser. Human studies of ileal mucosa from patients with non-inflammatory disease and healthy controls showed a higher antigen and bacterial passage in FAE than in VE. In patients with Crohn’s disease, the bacterial passage across the FAE was significantly increased compared to non-inflammatory and inflammatory controls (ulcerative colitis). Furthermore, there was an enhanced uptake of bacteria into dendritic cells, and augmented TNF-α release in Crohn’s disease mucosa. Taken together this thesis shows that stress can modulate the uptake of luminal antigens and bacteria via the FAE, through mechanisms involving CRH and mast cells. It further shows that human ileal FAE is functionally distinct from VE, and that Crohn’s disease patients exhibit enhanced FAE permeability compared to inflammatory and non-inflammatory controls. This thesis presents novel insights into regulation of the FAE barrier, as well as into the pathophysiology of Crohn’s disease by demonstrating a previously unrecognised defect of the FAE barrier function in ileal Crohn’s disease.
46

Development of electrochemical ZnSe Quantam dots biosensors for low-level detection of 17β-Estradiol estrogenic endocrine disrupting compound

Jijana, Abongile Nwabisa January 2010 (has links)
<p>The main thesis hub was on development of two electrochemical biosensors for the determination of 17&beta / -estradiol: an estrogenic endocrine disrupting compound. Endocronology have significantly shown that the endocrine disruptors contribute tremendously to health problems encountered by living species today, problems such as breast cancer, reproductive abnormalities, a decline in male population most significant to aquatic vertebrates, reduced fertility and other infinite abnormalities recurring in the reproductive system of mostly male species. The first biosensor developed for the detection of 17&beta / -estradiol endocrine disrupting compound / consisted of an electro-active polymeric 3-mercaptoprorionic acid capped zinc selenide quantum dots cross linked to horseradish peroxidase (HRP) enzyme as a bio-recognition element. The second biosensor developed was comprised of cysteamine self assembled to gold electrode, with 3-mercaptopropionic acid capped zinc selenide quantum dots cross linked to cytochrome P450-3A4 (CYP3A4) enzyme in the presence of 1-ethyl-3-(3- dimethylaminopropyl)carbodiimide hydrochloride and succinimide.</p>
47

Development of electrochemical ZnSe Quantam dots biosensors for low-level detection of 17β-Estradiol estrogenic endocrine disrupting compound

Jijana, Abongile Nwabisa January 2010 (has links)
Magister Scientiae - MSc / The main thesis hub was on development of two electrochemical biosensors for the determination of 17β-estradiol-estradiol: an estrogenic endocrine disrupting compound. Endocronology have significantly shown that the endocrine disruptors contribute tremendously to health problems encountered by living species today, problems such as breast cancer, reproductive abnormalities, a decline in male population most significant to aquatic vertebrates, reduced fertility and other infinite abnormalities recurring in the reproductive system of mostly male species. The first biosensor developed for the detection of 17β-estradiol-estradiol endocrine disrupting compound; consisted of an electro-active polymeric 3-mercaptoprorionic acid capped zinc selenide quantum dots cross linked to horseradish peroxidase (HRP) enzyme as a bio-recognition element. The second biosensor developed was comprised of cysteamine self assembled to gold electrode, with 3-mercaptopropionic acid capped zinc selenide quantum dots cross linked to cytochrome P450-3A4 (CYP3A4) enzyme in the presence of 1-ethyl-3-(3- dimethylaminopropyl)carbodiimide hydrochloride and succinimide. / South Africa
48

Studies On Conducting Polymer Microstructures : Electrochemical Supercapacitors, Sensors And Actuators

Pavan Kumar, K 07 1900 (has links) (PDF)
With the discovery of conductivity in doped polyacetylene (PA), a new era in synthetic metals has emerged by breaking the traditionally accepted view that polymers were always insulating. Conducting polymers are essentially characterized by the presence of conjugated bonding on the polymeric back bone, which facilitates the formation of polarons and bipolarons as charge carriers. Among the numerous conducting polymers synthesized to date, polypyrrole (PPy) is by far the most extensively studied because of prodigious number of applications owing to its facile polymerizability, environmental stability, high electrical conductivity, biocompatibility, and redox state dependent physico-chemical properties. Electrochemically prepared PPy is more interesting than the chemically prepared polymer because it adheres to the electrode surface and can be directly used for applications such as supercapacitors, electrochemical sensors, electromechanical actuators and drug delivery systems. In quest for improvement in quality of the device performances in the mentioned applications, micro and nano structured polymeric materials which bring in large surface area are studied. Finding a simple and efficient method of synthesis is very important for producing devices of PPy microstructures. Till date, Hard and soft template methods are the most employed methods for synthesis of these structures. Soft template based electrochemical methods are better than hard template methods to grow clean PPy microstructures on electrode substrates as procedures for removal of hard templates after the growth of microstructures are very complex. As per the literature, there is no unique method available to grow PPy microstructures which can demonstrate several applications. Although gas bubble based soft template methods are exploited to grow conducting polymer microstructures of sizes in few hundreds of micrometers, studies on applications of the same are limited. Hence it is planned to develop procedures to grow microstructures that can be used in several applications. In the current work, PPy microstructures with high coverage densities are synthesized on various electrode substrates by soft template based electrochemical techniques. Hollow, hemispherical and spherical PPy microstructures are developed by a two step method using electro generated hydrogen bubble templates on SS 304 electrodes. In the first step, Hydrogen bubbles are electro generated and stabilized on the electrode in the presence of β- naphthalene sulfonic acid (β-NSA). In the second step, Pyrrole is oxidised over the bubble template to form PPy microstructures. Microstructures (open and closed cups) of average size 15 μm are uniformly spread on the surface with a coverage density of 2.5×105 units /cm2. Globular PPy microstructures are developed by a single step method using concomitantly electro generated oxygen bubble templates on SS 304 electrodes during electropolymerization. Microstructures of average size 4 μm are uniformly spread on the surface with a coverage density of 7×105 units/cm2. Surfactant properties of Zwitterionic 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid (HEPES) are exploited for the first time to grow conducting polymer microstructures. Ramekin shaped PPy microstructures are developed using HEPES as the surfactant to stabilize hydrogen bubble templates in a two step electrochemical synthesis method. Microramekins of size 100 µm are uniformly spread on the surface with a coverage density of 3000 units/cm2. Micropipettes and microhorns of PPy are synthesised by a single step electrochemical route using HEPES as a surfactant. Hollow micropipettes of length 7 µm with an opening of 200 nm at the top of the structure are observed. Similarly microhorn/celia structures are observed with length 10-15 µm. Microcelia are uniformly distributed over the surface with each structure having a diameter of 2 µm at the base to 150 nm at the tip. Growth mechanism based on contact angle of the reactant solution droplets on the substrate is proposed. PPy microstructures are characterized by scanning electron microscopy, X-Ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman Spectroscopy and UV-Visible spectroscopy to study morphology, ‘chemical bonding and structure’ , ‘defects and charge carriers’. Applicability of the electrodes with PPy microstructures in supercapacitors is investigated by cyclic voltammetry, chronopotentiometry and electrical impedance spectroscopy. Electrodes developed by all the above methods demonstrated very good supercapacitance properties. Supercapacitor studies revealed very high specific capacitances (580, 915, 728 and 922 F/g,) and specific powers (20, 25, 13.89 and 15.91 kW/kg) for electrodes with PPy microstructures (H2 bubble based two step method, O2 bubble based single step method, HEPES stabilized H2 bubbble method and HEPES based microhorn/celia structures respectively). Supercapacitive behavior of all the electrodes is retained even after an extended charge-discharge cycling in excess of 1500 cycles. Horseradish peroxidase entrapped, bowl shaped PPy microstructures are developed for H2O2 biosensing. Amperometric biosensor has a performance comparable to the sensors reported in the literature with high sensitivity value of 12.8 μA/(cm2.mM) in the range 1.0 mM to 10 mM. Glucose oxidase entrapped PPy amperometric biosensor is developed for Glucose sensing. Sensitivity of 1.29 mA/(cm2.mM) is observed for β-D-Glucose sensing in the 0.1 mM to 5.0 mM range while 58 μA/(cm2.mM) is observed in the 5.0 to 40 mM range. Potentiometric urea sensor with urease entrapped PPy microstructures on SS electrode is developed. It is able to sense urea in the micromolar ranges down to 0.1 μM. It represented an excellent performance with sensitivity of 27 mV/decade. Sensitivity in the micromolar range is 4.9 mV/(μM.cm2). Drug encapsulation and delivery is successfully demonstrated by two actuation means (i) by electrochemical actuation, (ii) by actuation based on pH changes. Concepts are proved by delivering a fluorescent dye into neutral and acidic solutions. Drug delivery is confirmed by UV-Visible spectroscopy and Fluorescence microscopy. Finally, Micro/nanostructures with Tangerine, Hollow globular (Pani Poori), Chip, Flake, Rose, Worm, Horn and Celia shapes are synthesized electrochemically and scanning electron microscopic studies are presented. Controlled growth of microstructures on lithographically patterned gold interdigital electrodes is demonstrated with a future goal of creating addressable microstructures. The studies reported in the thesis provide an insight on various applications of PPy microstructures (supercapacitors, sensors and drug delivery systems) developed by a unique methodology based on electrochemically generated gas bubble templates.
49

Aplicaciones de interés medioambiental, clínico e industrial del análisis por inyección en flujo multiconmutado

Manera Fuente, Matias 30 November 2007 (has links)
El creciente número de controles analíticos requeridos en áreas como la sanitaria, el medio ambiente o la alimentación conlleva la necesaria automatización de los procesos analíticos.De acuerdo con ello, en esta tesis se han desarrollado, implementado y puesto a punto nuevos métodos automáticos de análisis robustos y económicos para la determinación de analitos de interés medioambiental, clínico e industrial. La automatización de las metodologías, empleando las técnicas de flujo MSFIA y MPFS, simplifican de forma considerable el procesamiento analítico con un importante ahorro de reactivos y tiempo, y permiten una mayor frecuencia de análisis, con la consecuente reducción del coste por análisis y en la generación de residuos. Los métodos propuestos son selectivos, reproducibles, precisos, robustos y en casi su totalidad son ejecutados sin la intervención del analista. / O crescente número de controlos analíticos requeridos em diversas áreas como o médio ambiente, a indústria sanitária ou a alimentar, conduziu à necessidade de automatização dos processos analíticos.Indo de encontro a estes requisitos, nesta tese desenvolveu-se, implementou-se e colocou-se em prática novos métodos de análise automáticos robustos e económicos para a determinação de analitos com interesse ambiental, clínico e industrial. A automatização das metodologias aplicando as técnicas de fluxo MSFIA e MPFS, simplificam de forma considerável o procedimento analítico com um decréscimo importante de reagentes gastos e tempo de análise, permitindo uma maior frequência de análise, com consequente redução do custo de análise e de geração de resíduos. Os métodos propostos são selectivos, reprodutíveis, precisos e robustos.

Page generated in 0.0796 seconds