• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of semiconductor-insulator interfaces using the three level charge pumping technique

Kivi, Michael John January 1996 (has links)
No description available.
2

Effect of wearout processes on the critical timing parameters and reliability of CMOS bistable circuits

Das, A. G. Man Mohan January 1997 (has links)
The objective of the research presented in this thesis was to investigate the effects of wearout processes on the performance and reliability of CMOS bistable circuits. The main wearout process affecting reliability of submicron MOS devices was identified as hot-carrier stress (and the resulting degradation in circuit performance). The effect of hot-carrier degradation on the resolving time leading to metastability of the bistable circuits also have been investigated. Hot-carrier degradation was identified as a major reliability concern for CMOS bistable circuits designed using submicron technologies. The major hot-carrier effects are the impact ionisation of hot- carriers in the channel of a MOS device and the resulting substrate current and gate current generation. The substrate current has been used as the monitor for the hot-carrier stress and have developed a substrate current model based on existing models that have been extended to incorporate additional effects for submicron devices. The optimisation of the substrate current model led to the development of degradation and life-time models. These are presented in the thesis. A number of bistable circuits designed using 0.7 micron CMOS technology design rules were selected for the substrate current model analysis. The circuits were simulated using a set of optimised SPICE model parameters and the stress factors on each device was evaluated using the substrate current model implemented as a post processor to the SPICE simulation. Model parameters for each device in the bistable were degraded according to the stress experienced and simulated again to determine the degradation in characteristic timing parameters for a predetermined stress period. A comparative study of the effect of degradation on characteristic timing parameters for a number of latch circuits was carried out. The life-times of the bistables were determined using the life-time model. The bistable circuits were found to enter a metastable state under critical timing conditions. The effect of hot-carrier stress induced degradation on the metastable state operation of the bistables were analysed. Based on the analysis of the hot-carrier degradation effects on the latch circuits, techniques are suggested to reduce hot-carrier stress and to improve circuit life-time. Modifications for improving hot- carrier reliability were incorporated into all the bistable circuits which were re-simulated to determine the improvement in life-time and reliability of the circuits under hot-carrier stress. The improved circuits were degraded based on the new stress factors and the degradation effects on the critical timing parameters evaluated and these were compared with those before the modifications. The improvements in the life-time and the reliability of the selected bistable circuits were quantified. It has been demonstrated that the hot-carrier reliability for all the selected bistable circuits can be improved by design techniques to reduce the stress on identified critically stressed devices.
3

Electro-thermal and Radiation Reliability of Power Transistors: Silicon to Wide Bandgap Semiconductors

Bikram Kishore Mahajan (11794316) 19 December 2021 (has links)
<p>We are in the midst of a technological revolution (popularly known as Industrie 4.0 or 4th Industrial Revolution) where our cars are being equipped with hundreds of sensors that make them safer, homes are becoming smarter, industry yields are at an all-time high, and internet-of-things is a reality. This was largely possible due to the developments in communication, electronics, motor controls, robotics, cyber security, software, efficient power distribution, etc. One of the major propellants of the 4th Industrial revolution is the ever-expanding applications of power electronics devices. All electrical energy will be provided, handled, and consumed through power electronics devices in the near future. Therefore, the reliability of power electronics devices will be instrumental in driving future technological advances. </p> <p> </p> <p><br></p><p>A myriad of devices is categorized as power electronics devices, and in the heart of those devices are the transistors. Although Silicon-based transistors still dominate the power electronics market, a paradigm shift towards wide bandgap semiconductors, such as silicon carbide (SiC), gallium nitride (GaN), beta-gallium oxide etc., is underway. However, realizing the full potential of these devices demands unconventional design, layout, and reliability. </p> <p> </p> <p>In this thesis, we try to establish a generalized model of reliability for power and logic transistors. We start by defining a comprehensive, substrate-, self-heating-, and reliability-aware safe operating area (SOA) that analytically establishes the optimum and self-consistent trade-off among breakdown voltage, power consumption, operating frequency, heat dissipation, and reliability before actual device fabrication. Then we take a deeper look into the reliability of individual transistors (a beta-gallium oxide transistor and a Silicon-based LDMOS), to test the predictions by the safe operating area, using both experiments and simulations. In the beta-gallium oxide transistor, we studied its implementation in a DC-DC voltage converter and concluded that the self-heating is a performance bottleneck and suggested approaches to alleviate it. For the LDMOS transistor, we investigated the hot carrier degradation (HCD) using experiments and simulations. We established that the HCD degradation kinetics is universal, and physics is the same as a classical transistor, despite a complicated geometry. Finally, we studied the correlation between HCD and radiation in LDMOS used in space shuttles, airplanes, etc., to determine its lifetime. </p><p><br></p> <p> </p> <p>We have holistically analyzed the reliability of power transistors by extending the theories of logic transistors in this thesis. Therefore, this thesis takes us a step closer to a generalized reliability model for power transistors by developing a comprehensive and predictive model for the safe operating area, encompassing all sources of stresses (e.g., electrical, thermal, and radiation) it experiences during operation.</p>
4

Reliability Investigations of MOSFETs using RF Small Signal Characterization

Chohan, Talha 18 September 2023 (has links)
Modern technology needs and advancements have introduced various new concepts such as Internet-of-Things, electric automotive, and Artificial intelligence. This implies an increased activity in the electronics domain of analog and high frequency. Silicon devices have emerged as a cost-effective solution for such diverse applications. As these silicon devices are pushed towards higher performance, there is a continuous need to improve fabrication, power efficiency, variability, and reliability. Often, a direct trade-off of higher performance is observed in the reliability of semiconductor devices. The acceleration-based methodologies used for reliability assessment are the adequate time-saving solution for the lifetime's extrapolation but come with uncertainty in accuracy. Thus, the efforts to improve the accuracy of reliability characterization methodologies run in parallel. This study highlights two goals that can be achieved by incorporating high-frequency characterization into the reliability characteristics. The first one is assessing high-frequency performance throughout the device's lifetime to facilitate an accurate description of device/circuit functionality for high-frequency applications. Secondly, to explore the potential of high-frequency characterization as the means of scanning reliability effects within devices. S-parameters served as the high-frequency device's response and mapped onto a small-signal model to analyze different components of a fully depleted silicon-on-insulator MOSFET. The studied devices are subjected to two important DC stress patterns, i.e., Bias temperature instability stress and hot carrier stress. The hot carrier stress, which inherently suffers from the self-heating effect, resulted in the transistor's geometry-dependent magnitudes of hot carrier degradation. It is shown that the incorporation of the thermal resistance model is mandatory for the investigation of hot carrier degradation. The property of direct translation of small-signal parameter degradation to DC parameter degradation is used to develop a new S-parameter based bias temperature instability characterization methodology. The changes in gate-related small-signal capacitances after hot carrier stress reveals a distinct signature due to local change of flat-band voltage. The measured effects of gate-related small-signal capacitances post-stress are validated through transient physics-based simulations in Sentaurus TCAD.:Abstract Symbols Acronyms 1 Introduction 2 Fundamentals 2.1 MOSFETs Scaling Trends and Challenges 2.1.1 Silicon on Insulator Technology 2.1.2 FDSOI Technology 2.2 Reliability of Semiconductor Devices 2.3 RF Reliability 2.4 MOSFET Degradation Mechanisms 2.4.1 Hot Carrier Degradation 2.4.2 Bias Temperature Instability 2.5 Self-heating 3 RF Characterization of fully-depleted Silicon on Insulator devices 3.1 Scattering Parameters 3.2 S-parameters Measurement Flow 3.2.1 Calibration 3.2.2 De-embedding 3.3 Small-Signal Model 3.3.1 Model Parameters Extraction 3.3.2 Transistor Figures of Merit 3.4 Characterization Results 4 Self-heating assessment in Multi-finger Devices 4.1 Self-heating Characterization Methodology 4.1.1 Output Conductance Frequency dependence 4.1.2 Temperature dependence of Drain Current 4.2 Thermal Resistance Behavior 4.2.1 Thermal Resistance Scaling with number of fingers 4.2.2 Thermal Resistance Scaling with finger spacing 4.2.3 Thermal Resistance Scaling with GateWidth 4.2.4 Thermal Resistance Scaling with Gate length 4.3 Thermal Resistance Model 4.4 Design for Thermal Resistance Optimization 5 Bias Temperature Instability Investigation 5.1 Impact of Bias Temperature Instability stress on Device Metrics 5.1.1 Experimental Details 5.1.2 DC Parameters Drift 5.1.3 RF Small-Signal Parameters Drift 5.2 S-parameter based on-the-fly Bias Temperature Instability Characterization Method 5.2.1 Measurement Methodology 5.2.2 Results and Discussion 6 Investigation of Hot-carrier Degradation 6.1 Impact of Hot-carrier stress on Device performance 6.1.1 DC Metrics Degradation 6.1.2 Impact on small-signal Parameters 6.2 Implications of Self-heating on Hot-carrier Degradation in n-MOSFETs 6.2.1 Inclusion of Thermal resistance in Hot-carrier Degradation modeling 6.2.2 Convolution of Bias Temperature Instability component in Hot-carrier Degradation 6.2.3 Effect of Source and Drain Placement in Multi-finger Layout 6.3 Vth turn-around effect in p-MOSFET 7 Deconvolution of Hot-carrier Degradation and Bias Temperature Instability using Scattering parameters 7.1 Small-Signal Parameter Signatures for Hot-carrier Degradation and Bias Temperature Instability 7.2 TCAD Dynamic Simulation of Defects 7.2.1 Fixed Charges 7.2.2 Interface Traps near Gate 7.2.3 Interface Traps near Spacer Region 7.2.4 Combination of Traps 7.2.5 Drain Series Resistance effect 7.2.6 DVth Correction 7.3 Empirical Modeling based deconvolution of Hot-carrier Degradation 8 Conclusion and Recommendations 8.1 General Conclusions 8.2 Recommendations for Future Work A Directly measured S-parameters and extracted Y-parameters B Device Dimensions for Thermal Resistance Modeling C Frequency response of hot-carrier degradation (HCD) D Localization Effect of Interface Traps Bibliography
5

Etude de la fiabilité de type negative bias temperature instability (NBTI) et par porteurs chauds (HC) dans les filières CMOS 28nm et 14nm FDSOI / Study of negative-bias temperature instability (NBTI) and under hot-carriers (HC) in 28nm and 14nm FDSOI CMOS nodes

Ndiaye, Cheikh 07 July 2017 (has links)
L’avantage de cette architecture FDSOI par rapport à l’architecture Si-bulk est qu’elle possède une face arrière qui peut être utilisée comme une deuxième grille permettant de moduler la tension de seuil Vth du transistor. Pour améliorer les performances des transistors canal p (PMOS), du Germanium est introduit dans le canal (SiGe) et au niveau des sources/drain pour la technologie 14nm FDSOI. Par ailleurs, la réduction de la géométrie des transistors à ces dimensions nanométriques fait apparaître des effets de design physique qui impactent à la fois les performances et la fiabilité des transistors.Ce travail de recherche est développé sur quatre chapitres dont le sujet principal porte sur les performances et la fiabilité des dernières générations CMOS soumises aux mécanismes de dégradation BTI (Bias Temperature Instability) et par injections de porteurs chauds (HCI) dans les dernières technologies 28nm et 14nm FDSOI. Dans le chapitre I, nous nous intéressons à l’évolution de l’architecture du transistor qui a permis le passage des nœuds Low-Power 130-40nm sur substrat silicium à la technologie FDSOI (28nm et 14nm). Dans le chapitre II, les mécanismes de dégradation BTI et HCI des technologies 28nm et 14nm FDSOI sont étudiés et comparés avec les modèles standards utilisés. L’impact des effets de design physique (Layout) sur les paramètres électriques et la fiabilité du transistor sont traités dans le chapitre III en modélisant les contraintes induites par l’introduction du SiGe. Enfin le vieillissement et la dégradation des performances en fréquence ont été étudiés dans des circuits élémentaires de type oscillateurs en anneau (ROs), ce qui fait l’objet du chapitre IV. / The subject of this thesis developed on four chapters, aims the development of advanced CMOS technology nodes fabricated by STMicroelectronics in terms of speed performance and reliability. The main reliability issues as Bias Temperature Instability (BTI) and Hot-Carriers (HC) degradation mechanisms have been studied in the most recent 28nm and 14nm FDSOI technologies nodes. In the first chapter, we presents the evolution of transistor architecture from the low-power 130-40nm CMOS nodes on silicon substrate to the recent FDSOI technology for 28nm and 14nm CMOS nodes. The second chapter presents the specificity of BTI and HCI degradation mechanisms involved in 28nm and 14nm FDSOI technology nodes. In the third chapter, we have studied the impact of layout effects on device performance and reliability comparing symmetrical and asymmetrical geometries. Finally the trade-off between performance and reliability is studied in the fourth chapter using elementary circuits. The benefit of using double gate configuration with the use of back bias VB in FDSOI devices to digital cells, allows to compensate partially or totally the aging in ring oscillators (ROs) observed by the frequency reduction. This new compensation technique allows to extend device and circuit lifetime offering a new way to guaranty high frequency performance and long-term reliability.
6

Fiabilité Porteurs Chauds (HCI) des transistors FDSOI 28nm High-K grille métal / HCI reliability of FDSOI HKMG transistors in sub-28nm technologies

Arfaoui, Wafa 24 September 2015 (has links)
Au sein de la course industrielle à la miniaturisation et avec l’augmentation des exigences technologiques visant à obtenir plus de performances sur moins de surface, la fiabilité des transistors MOSFET est devenue un sujet d’étude de plus en plus complexe. Afin de maintenir un rythme de miniaturisation continu, des nouvelles architectures de transistors MOS en été introduite, les technologies conventionnelles sont remplacées par des technologies innovantes qui permettent d'améliorer l'intégrité électrostatique telle que la technologie FDSOI avec des diélectriques à haute constante et grille métal. Malgré toutes les innovations apportées sur l’architecture du MOS, les mécanismes de dégradations demeurent de plus en plus prononcés. L’un des mécanismes le plus critique des technologies avancées est le mécanisme de dégradation par porteurs chauds (HCI). Pour garantir les performances requises tout en préservant la fiabilité des dispositifs, il est nécessaire de caractériser et modéliser les différents mécanismes de défaillance au niveau du transistor élémentaire. Ce travail de thèse porte spécifiquement sur les mécanismes de dégradations HCI des transistors 28nm FDSOI. Basé sur l’énergie des porteurs, le modèle en tension proposé dans ce manuscrit permet de prédire la dégradation HC en tenant compte de la dépendance en polarisation de substrat incluant les effets de longueur, d’épaisseur de l’oxyde de grille ainsi que l’épaisseur du BOX et du film de silicium. Ce travail ouvre le champ à des perspectives d’implémentation du model HCI pour les simulateurs de circuits, ce qui représente une étape importante pour anticiper la fiabilité des futurs nœuds technologiques. / As the race towards miniaturization drives the industrial requirements to more performances on less area, MOSFETs reliability has become an increasingly complex topic. To maintain a continuous miniaturization pace, conventional transistors on bulk technologies were replaced by new MOS architectures allowing a better electrostatic integrity such as the FDSOI technology with high-K dielectrics and metal gate. Despite all the architecture innovations, degradation mechanisms remains increasingly pronounced with technological developments. One of the most critical issues of advanced technologies is the hot carrier degradation mechanism (HCI) and Bias Temperature Instability (BTI) effects. To ensure a good performance reliability trade off, it is necessary to characterize and model the different failure mechanisms at device level and the interaction with Bias Temperature Instability (BTI) that represents a strong limitation of scaled CMOS nodes. This work concern hot carrier degradation mechanisms on 28nm transistors of the FDSOI technology. Based on carrier’s energy, the energy driven model proposed in this manuscript can predict HC degradation taking account of substrate bias dependence (VB) including the channel length effects (L), gate oxide thickness (TOX) , back oxide BOX (TBox) and silicon film thickness (TSI ). This thesis opens up new perspectives of the model Integration into a circuit simulator, to anticipate the reliability of future technology nodes and check out circuit before moving on to feature design steps.
7

Systematic Analysis of the Small-Signal and Broadband Noise Performance of Highly Scaled Silicon-Based Field-Effect Transistors

Venkataraman, Sunitha 17 May 2007 (has links)
The objective of this work is to provide a comprehensive analysis of the small-signal and broadband noise performance of highly scaled silicon-based field-effect transistors (FETs), and develop high-frequency noise models for robust radio frequency (RF) circuit design. An analytical RF noise model is developed and implemented for scaled Si-CMOS devices, using a direct extraction procedure based on the linear two-port noise theory. This research also focuses on investigating the applicability of modern CMOS technologies for extreme environment electronics. A thorough analysis of the DC, small-signal AC, and broadband noise performance of 0.18 um and 130 nm Si-CMOS devices operating at cryogenic temperatures is presented. The room temperature RF noise model is extended to model the high-frequency noise performance of scaled MOSFETs at temperatures down to 77 K and 10 K. Significant performance enhancement at cryogenic temperatures is demonstrated, indicating the suitability of scaled CMOS technologies for low temperature electronics. The hot-carrier reliability of MOSFETs at cryogenic temperatures is investigated and the worst-case gate voltage stress condition is determined. The degradation due to hot-carrier-induced interface-state creation is identified as the dominant degradation mechanism at room temperature down to 77 K. The effect of high-energy proton radiation on the DC, AC, and RF noise performance of 130 nm CMOS devices is studied. The performance degradation is investigated up to an equivalent total dose of 1 Mrad, which represents the worst case condition for many earth-orbiting and planetary missions. The geometric scaling of MOSFETs has been augmented by the introduction of novel FET designs, such as the Si/SiGe MODFETs. A comprehensive characterization and modeling of the small-signal and high-frequency noise performance of highly scaled Si/SiGe n-MODFETs is presented. The effect of gate shot noise is incorporated in the broadband noise model. SiGe MODFETs offer the potential for high-speed and low-voltage operation at high frequencies and hence are attractive devices for future RF and mixed-signal applications. This work advances the state-of-the-art in the understanding and analysis of the RF performance of highly scaled Si-CMOS devices as well as emerging technologies, such as Si/SiGe MODFETs. The key contribution of this dissertation is to provide a robust framework for the systematic characterization, analysis and modeling of the small-signal and RF noise performance of scaled Si-MOSFETs and Si/SiGe MODFETs both for mainstream and extreme-environment applications.

Page generated in 0.142 seconds