• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 49
  • 49
  • 23
  • 11
  • 11
  • 11
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Densification Mechanisms for Spark Plasma Sintering in Alumina and Alumina Based Systems

Chakravarty, Dibyendu January 2013 (has links) (PDF)
The densification mechanisms of polycrystalline α-alumina by spark plasma sintering are highly contradictory, with different research groups suggesting diffusion to dislocation controlled mechanisms to be rate controlling. The specific objective of this work was to investigate densification mechanisms of α-alumina during the intermediate and final stages of sintering by SPS, analyze the microstructural development and establish sintering trajectories. In addition, zirconia and yttria were added in different weight percentages to study the effect of solute concentration on the densification kinetics of spark plasma sintered alumina. The present work adopts a different approach from the classical method adopted previously to analyze the sintering kinetics and densification mechanisms of alumina in SPS, although existing models for hot pressing were adopted for the basic analysis. The densification behavior was investigated in the temperature range 1223-1573 K under applied stresses of 25, 50 and 100 MPa and grain sizes between 100 and 250 nm. The SEM micrographs reveal equiaxed grains with no abnormal grain growth in the dense samples. The ‘master sintering curve’ shows grain size to be primarily dependent on density, irrespective of the applied stresses or temperature. The stress exponent of 1 along with an inverse grain size exponent of 3 and activation energy of 320-550 kJ mol-1 suggests Al3+ grain boundary diffusion as the rate controlling densification mechanism in alumina. The densification rates are marginally slower in compositions with 0.1% Y2O3 and ZrO2 content possibly due to the smaller grain sizes used in this study which leads to faster rates compared to earlier reports. However, higher Y2O3 and ZrO2 content led to decrease in densification rate by more than an order of magnitude possibly due to presence of a second phase which increases the effective path length for diffusion, thereby reducing the densification rates. Presence of Y2O3 and ZrO2 in the compositions with 0.1% Y2O3 and ZrO2 were confirmed by TEM studies. The Y3Al5O12 (YAG) phase developed between 1223 and 1273 K and suppressed densification and grain growth in alumina. In spite of higher temperatures required for alumina-YAG and alumina-zirconia composites to attain density ~99%, the alumina grain size in the composites was smaller than that in pure alumina due to the Zener drag effect. The stress exponents obtained for Y2O3 and ZrO2 composites at both the concentrations yield a value of n~ 2, which indicates a change in densification mechanism from pure alumina. The higher stress dependence of these composites could be due to presence of solute and second phase formation, both of which retard densification rates. The inverse grain size exponents obtained are between 1 and 2; both stress exponent and grain size exponent values suggest an interface reaction controlled diffusion mechanism occurring in these composites, independent of the Y2O3 and ZrO2 content. Higher activation energies are obtained with the Y2O3 and ZrO2 composites of higher content, respectively, due to presence of second phase particles at grain boundaries. The presence of solutes at grain boundaries hinders grain boundary diffusion of alumina, leading to interface reaction controlled process; this is confirmed by superimposing standard aluminum grain boundary and lattice diffusion data on to stress-densification rate data obtained in this work. A comparison of stress exponents using current experimental data adopting the present and the classical approaches show a wide difference in their values indicating a change in the rate controlling diffusion path, necessitating a review of the assumptions made on the basic equations used in previous SPS studies.
22

ZnSe ceramics and phosphate glasses for optical applications in the visible and infrared ranges / Céramiques de ZnSe et verres de phosphate pour des applications optiques dans le visible et l'infrarouge

Zhou, Gang 21 October 2014 (has links)
Une étude en deux parties a été effectuée sur la préparation et la caractérisation de céramiques de ZnSe et de verres de phosphate à des fins optiques. Pour préparer des poudres de ZnSe, deux voies de synthèse ont été utilisées: i) hydrothermales; ii) le broyage à billes. La taille des particules ainsi que leur morphologie a été analysée par différentes techniques (DRX, MEB…). Ensuite, deux technologies de frittage, pressage à chaud (HP) et frittage flash (SPS), ont été mises en œuvre pour obtenir des échantillons massifs de ZnSe optiquement transparents. La meilleure transmission obtenue dans le domaine du moyen infrarouge, pour les échantillons HP et SPS, est supérieure à 50% et 40% respectivement. Pour obtenir des verres de phosphate avec une grande durabilité chimique, des cations avec une intensité de champ élevée tels que Nb5+ et Ti4+ ont été incorporés dans un verre de phosphate. La transparence dans le domaine du visible a été obtenue en utilisant de petites quantités d'agents d'oxydation tels que les sulfates ou les nitrates. L’utilisation de la spectroscopie par réflectance diffuse a permis de déterminer les coordonnées chromatiques afin d’évaluer le bénéfice de ces ajouts. / A two-part study was conducted on the preparation and characterization of ZnSe ceramic and phosphate glasses for optical applications in the visible and infrared range. To prepare ZnSe powders, two synthetic routes were used: i) hydrothermal; ii) ball milling. The size and morphology of synthesized powders were analyzed using different techniques (XRD, SEM…). Then two sintering technologies, hot pressing (HP) sintering and spark plasma sintering (SPS) sintering have been implemented to obtain optically transparent ZnSe bulk samples. The best transmission obtained in the mid-infrared range, using HP and SPS, is greater than 50% and 40% respectively. To synthesize phosphate glasses with a high chemical durability, cations with high field strength such as Nb5+ and Ti4+ were incorporated into a phosphate matrix. The transparency in the visible range was obtained using small amounts of oxidation agents such as sulfates or nitrates. The use of diffuse reflectance spectroscopy led to determination of the chromaticity coordinates to evaluate the benefit of these additions.
23

Estudo da zirc?nia refor?ado com alumina

Silva, Yankel Bruno Fontes 29 December 2008 (has links)
Made available in DSpace on 2014-12-17T14:06:53Z (GMT). No. of bitstreams: 1 YankelBFC.pdf: 3745387 bytes, checksum: 0a72ac9538c533fa074f31beeeb3660d (MD5) Previous issue date: 2008-12-29 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Ceramics materials have good properties including chemical stability, high hardness and wear resistance. Moreover, due to its fragility, can suffer failure under relatively low levels of tension. Actually zirconia is the material of choice in metal free dental prostheses used in dentistry due its inertia in physiological environment, good bending strength, hardness and fracture toughness. The alumina and mixed tungsten and titanium carbides additions, acting as reinforcement elements in the zirconia matrix, have as their main objective the improvement of mechanical properties of this material. In this work, samples of zirconia, zirconia with 30% wt of alumina and zirconia with 30% wt mixed carbides were analyzed. The samples were sintered by uniaxial hot pressing on 30 MPa pressure, for 1 hour in an argon atmosphere. They were physically characterized by porosity and density measurements, and mechanically by 3-points bending strength and Vickers microhardness. The X-ray diffraction was used for the phase identifications and microstructure was examined by scanning electron microscopy (SEM). The addition of mixed carbides as reinforcement elements in zirconia matrix provides improvements in all properties analyzed in this work. The alumina addition has dropped the zirconia strength, although it caused improvement in other properties / Materiais cer?micos apresentam boas propriedades incluindo estabilidade qu?mica, elevada dureza e resist?ncia ao desgaste. Por outro lado, devido a sua fragilidade, podem sofrer falha sob n?veis de tens?es relativamente baixos. A zirc?nia ? hoje o material de escolha em odontologia para o uso em pr?teses dentais do tipo metal free por ser inerte em meio fisiol?gico, apresentar boa resist?ncia ? flex?o, dureza e tenacidade ? fratura. A adi??o da alumina e dos carbetos mistos de tungst?nio e tit?nio ,atuando como elementos de refor?o na matriz de zirc?nia, t?m como principal objetivo o aperfei?oamento das propriedades mec?nicas deste material. No presente trabalho, foram analisadas amostras de: zirc?nia, zirc?nia com 30% em peso de alumina e zirc?nia com 30% em peso de carbetos mistos. Os corpos de prova foram sinterizados por prensagem a quente uniaxial, sobre press?o de 30 MPa, durante 1 hora em atmosfera de arg?nio. Os mesmos foram caracterizados fisicamente por meio de medidas de porosidade e de densidade, e mecanicamente por resist?ncia a flex?o em 3 pontos e microdureza Vickers. A difra??o de raios X foi utilizada para a identifica??o das fases presentes e a microestrutura foi analisada por microscopia eletr?nica de varredura (MEV). A adi??o dos carbetos mistos como elemento de refor?o da matriz de zirc?nia ocasionou uma melhoria em todas as propriedades analisadas neste trabalho. A adi??o da alumina proporcionou uma queda na resist?ncia mec?nica da zirc?nia, apesar de ter ocasionado melhora nas demais propriedades
24

Obten??o de cer?micas ? base de tric?lcio fosfatos utilizando ?xido de mangan?s como aditivo

Ramalho, Eduardo Galv?o 28 June 2006 (has links)
Made available in DSpace on 2014-12-17T14:57:45Z (GMT). No. of bitstreams: 1 EduardoGR.pdf: 1635946 bytes, checksum: 593244cdda721eea4684ae85323cfee4 (MD5) Previous issue date: 2006-06-28 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The calcium phosphate ceramics have been very investigated as material for bone implants. The tricalcium phosphate (β-TCP) had a great potential for application in temporary implants like a resorbable bioceramic. This material presents a limitation in its sintering temperature due to occurrence of the allotropic transformation β → α at temperatures around 1200?C, not allowing the attainment of dense ceramic bodies. This transformation also causes cracks, what diminishes the mechanical strength, limiting its use to applications of low mechanical requests. This work studies the influence of the addition of manganese oxide in the sintering of β-TCP. Two processing routes were investigated. The first was the powder metallurgy conventional process. The test bodies (samples) were pressed and sintering at temperatures of 1200 and 1250?C. The second route was uniaxial hot pressing and its objective was to obtain samples with high relative density. The samples were physically characterized through density and porosity measurements. The thermal behavior was studied through dilatometric, thermal differential and thermogravimetric analysis. The mechanical properties were characterized by three point flexure test and Vickers microhardness measurements. The microstructure was analyzed by scanning electron microscopy. The addition of manganese oxide caused an improvement of the mechanical strength in relation to the material without additive and promoting the stabilization of β-TCP to greater temperatures / As cer?micas de fosfato de c?lcio t?m sido intensamente investigadas como materiais para implantes ?sseos. O fosfato tric?lcico (β-TCP) possui um grande potencial para aplica??o em implantes tempor?rios por ser uma biocer?mica absorv?vel. Entretanto, este tipo de material apresenta uma limita??o na sua temperatura de sinteriza??o devido ? ocorr?ncia da transforma??o alotr?pica β → α em torno de 1200?C. Isto impede a obten??o de corpos cer?micos densos e provoca trincas, diminuindo a resist?ncia do material e limitando a sua utiliza??o a aplica??es de baixa solicita??o mec?nica. A influ?ncia da adi??o de ?xido de mangan?s na sinteriza??o do β-TCP foi estudada neste trabalho. Duas rotas de processamento foram investigadas. A primeira utilizou o processo convencional de metalurgia do p?. Os corpos de prova foram prensados, sendo posteriormente sinterizados nas temperaturas de 1200 e 1250?C. O segundo m?todo de processamento utilizou a rota de prensagem uniaxial a quente, e tinha como objetivo obter corpos de prova com alta densidade relativa. As amostras foram caracterizadas fisicamente por meio de medidas de porosidade e densidade e termicamente por dilatometria e an?lise termogravim?trica e t?rmica diferencial. Os corpos sinterizados foram caracterizados mecanicamente por resist?ncia a flex?o em 3 pontos e microdureza Vickers, sendo tamb?m sua microestrutura analisada por microscopia eletr?nica de varredura. A adi??o do ?xido de mangan?s ocasionou uma melhoria da resist?ncia mec?nica em rela??o ao material sem aditivo, al?m de promover uma estabiliza??o do β-TCP em temperaturas mais elevadas
25

Objemové materiály na bázi Zn a Mg pro biomedicínské aplikace / Zn and Mg based bulk materials for biomedical applications

Ryšťák, Jaroslav January 2018 (has links)
Topic of the diploma thesis is Zn-Mg bulk material preparation by powder mixtures sintering at hot pressing. Structure, porosity and physically mechanical properties of prepared bulk materials were evaluated. Obtained results and their interpretation were served as feedback for following optimization of individual processing parameters of bulk materials preparation. Solution of diploma thesis is focused on study and control of processes during bulk material preparation and processes description from physical-chemical point of view with respect to structure creation and final material properties.
26

Procesy přípravy a charakterizace objemového materiálu z prášků Mg a Zn / Preparation processes and characterization of bulk material from Mg and Zn powders

Hasoňová, Michaela January 2016 (has links)
Topic of the diploma thesis is Mg-Zn bulk material preparation process by powder mixtures sintering at hot pressing. Structure, porosity and physically-mechanical properties of prepared bulk materials was evaluated. Obtained results and their interpretation were served as feedback for following optimization of individual processing parameters of bulk materials preparation. Thesis solving focuses on study and control of processes during bulk material preparation and description of the processes from physically-chemical point of view of the structure creation and final material properties.
27

Batterie tout solide pour application automobile : processus de mise en forme et étude des interfaces / All solid-state battery for automotive application : shaping process and study of interfaces

Hajndl, Ognjen 15 March 2019 (has links)
Les attentes pour les prochaines générations de batteries pour le véhicule électrique sont grandes, que ce soit en termes d’autonomie, d’impact environnemental, de vitesse de charge et de coût. Les systèmes dits tout solide comprenant un électrolyte, non plus liquide, mais solide et non-inflammable pourrait répondre à ces attentes.La céramique de type grenat Li7La3Zr2O12 (LLZO) est un électrolyte solide prometteur au vue de sa bonne conductivité, stabilité chimique et électrochimique. La contrainte majeure réside dans le besoin de densifier la céramique à haute température afin de la rendre conductrice. Aucune méthode standard d’assemblage/mise en forme n’existe pour obtenir une cellule tout solide dense avec des interfaces peu résistives.Dans cette optique, les travaux de thèse ont permis d’optimiser le protocole de synthèse par voie « tout solide » de l’oxyde LLZO et sa mise en forme grâce à la technique de compression uniaxiale à chaud (CUC). Les conditions d’assemblage de cellules symétriques Li/LLZO/Li ont permis d’étudier l’interface Li-métal/LLZO et son impact sur la dissolution/redéposition du lithium. La faisabilité de densifier une « demi-cellule » (cathode composite/LLZO) en une seule étape a également été étudiée en ajustant les paramètres de température et pression du protocole de CUC. / Next generation batteries expectations for electric vehicle are significant, whether in terms of autonomy, environmental impact, charging speed and cost. The all solid-state batteries with a non-flammable solid electrolyte, rather than the conventional liquid one, could meet those criteria.Garnet-type ceramic Li7La3Zr2O12 (LLZO) is a promising solid electrolyte given its good Li-ion conductivity, chemical and electrochemical stability. The major constraint is the need to densify the ceramic at high temperature in order to make it conductive. No standard method exists to build a dense all-solid cell with low interfacial resistance.In this context, the PhD work managed to optimize the solid-state synthesis protocol of the LLZO oxide and his densification by the hot-pressing technique. The conditions of symmetrical Li/LLZO/Li cell assembly allowed to study the Li-metal/LLZO interface and its impact on lithium plating/striping behavior. Feasibility of densifying a “half-cell” (composite cathode/LLZO) in one single step was also studied by adjusting the hot-pressing temperature and pressure parameters.
28

Produção de cintiladores cerâmicos de germanato de bismuto (Bi4Ge3O12) através da prensagem a quente / Ceramic scintillations production of bismuth germanate (Bi4Ge3O12) through hot pressing

Matos, Ivus Lorenzo Oliveira 29 August 2018 (has links)
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In the present work the potential of ceramic scintillator production of bismuth germanate by hot pressing was investigated. The microstructure and the scintillation yield were studied as function of the hot pressing parameters, such as time sintering plateau (4 and 10 hours), temperature (840 e 875 °C), and pressure (0.10, 0.14, and 0.18 MPa). Values of relative densities were obtained through Archimedes method showing that for the ceramic bodies produced the densities were higher than 94%. X-ray diffraction showed that the ceramics and the precursor powder exhibited two different Bi-Ge-O stoichiometries, the majority one Bi4Ge3O12 and the spurious one Bi12GeO20. Analyzes by scanning electron microscopy (SEM) was used to investigate the microstructure of the grains with the changes of hot pressing parameters. The optical characterization was done by radioluminescence (RL), in which it was verified that the sample sintered by hot pressing have better efficiency in the characteristic emission of BGO. The influence of sintering condition in scintillation efficiency of the ceramic bodies was also investigated. / Neste trabalho verificou-se o potencial da prensagem a quente na produção de cintiladores cerâmicos de germanato de bismuto (Bi4Ge3O12 - BGO). Foi realizado um estudo dos parâmetros de prensagem a quente tais como: tempo de patamar de sinterização (4 e 10 horas), temperatura (840 e 875 °C) e carga aplicada (0.10, 0.14 e 0.18 MPa) nos quais, os dados de densidade relativa obtidos através de método de Arquimedes mostraram que as cerâmicas produzidas apresentam densidades relativas superiores a 94%. Para a caracterização das amostras foram realizadass análises de difração de raios X (DRX), as quais mostraram que as cerâmicas de BGO apresentam fases cristalinas em duas estequiometrias, a fase principal e majoritária Bi4Ge3O12 e a fase minoritária Bi12GeO20. Análises por microscopia eletrônica de varredura (MEV) foram utilizadas para investigar a formação da microestrutura dos grãos com a mudança dos parâmetros de prensagem a quente. A caracterização óptica foi realizada via radioluminescência (RL), em que foi verificado que as amostras sinterizadas via prensagem a quente apresentam melhor eficiência na emissão característica do BGO. A influência das condições de sinterização na eficiência de cintilação das cerâmicas também foi investigada. / São Cristóvão, SE
29

A comparison of SPS  and HP sintered, electroless copper plated carbon nanofibre composites for heat sink applications

Ullbrand, Jennifer January 2009 (has links)
<p>The aim of this study is to synthesize a material with high thermal conductivity and a low coefficient of thermal expansion (CTE), useful as a heat sink. Carbon nanofibres (CNF) are first coated with copper by an electroless plating technique and then sintered to a solid sample by either spark plasma sintering (SPS) or hot pressing (HP). The final product is a carbon nanofibre reinforced copper composite. Two different fibre structures are considered: platlet (PL) and herringbone (HB). The influence of the amount of CNF reinforcement (6-24 %wt), on the thermal conductivity and CTE is studied. CNF has an excellent thermal conductivity in the direction along the fibre while it is poor in the transverse direction. The CTE is close to zero in the temperature range of interest. The adhesion of Cu to the CNF surface is in general poor and thus improving the the wetting of the copper by surface modifications of the fibres are of interest such that thermal gaps in the microstructure can be avoided. The poor wetting results in CNF agglomerates, resulting in an inhomogeneous microstructure. In this report a combination of three different types of surface modifications has been tested: (1) electroless deposition of copper was used to improve Cu impregnation of CNF; (2) heat treatment of CNF to improve wetting; and (3) introduction of a Cr buffer layer to further enhance wetting. The obtained composite microstructures are characterized in terms of chemical composition, grain size and degree of agglomeration. In addition their densities are also reported. The thermal properties were evaluated in terms of thermal diffusivity, thermal conductivity and CTE. Cr/Cu coated platelet fibres (6wt% of CNF reinforcement) sintered by SPS is the sample with the highest thermal conductivity, ~200 W/Km. The thermal conductivity is found to decrease with increasing content of CNFs.</p>
30

Sn0.9In0.1P2O7-Based Organic/Inorganic Composite Membranes : Application to Intermediate-Temperature Fuel Cells

Hibino, Takashi, Tomita, Atsuko, Sano, Mitsuru, Kamiya, Toshio, Nagao, Masahiro, Heo, Pilwon January 2007 (has links)
No description available.

Page generated in 0.0981 seconds