Spelling suggestions: "subject:"hubbard delmodell"" "subject:"hubbard cellmodell""
31 |
The Hubbard model on a honeycomb lattice with fermionic tensor networksSchneider, Manuel 09 December 2022 (has links)
Supervisor at Deutsches Elektronen-Synchrotron (DESY) in Zeuthen: Dr. Habil. Karl Jansen / Mit Tensor Netzwerken (TN) untersuchen wir auf einem hexagonalen Gitter das Hubbard-Modell mit einem chemischen Potential. Wir zeigen, dass ein TN als Ansatz für die Zustände des Modells benutzt werden kann und präsentieren die berechneten Eigenschaften bei niedrigen Energien. Unser Algorithmus wendet eine imaginäre Zeitentwicklung auf einen fermionischen projected engangled pair state (PEPS) auf einem endlichen Gitter mit offenen Randbedingungen an. Der Ansatz kann auf einen spezifischen fermionischen Paritätssektor beschränkt werden, was es uns ermöglicht, den Grundzustand und den Zustand mit einem Elektron weniger zu simulieren. Mehrere in unserer Arbeit entwickelte Verbesserungen des Algorithmus führen zu einer erheblichen Steigerung der Effizienz und Genauigkeit. Wir messen Erwartungswerte mit Hilfe eines boundary matrix product state. Wir zeigen, dass Observablen in dieser Näherung mit einer weniger starken Trunkierung, als in der Literatur erwartet wird, berechnet werden können. Dies führt zu einer erheblichen Reduzierung der numerischen Kosten des Algorithmus. Für verschiedene Stärken der lokalen Wechselwirkung, sowie für mehrere chemische Potentiale berechnen wir die Energie, die Teilchenzahl und die Magnetisierung mit guter Genauigkeit. Wir zeigen die Abhängigkeit der Teilchenzahl vom chemischen Potential und berechnen die Energielücke. Wir demonstrieren die Skalierbarkeit zu großen Gittern mit bis zu 30 × 15 Gitterpunkten und machen Vorhersagen in einem Teil des Phasenraums, der für Monte-Carlo nicht zugänglich ist. Allerdings finden wir auch Limitierungen des Algorithmus aufgrund von Instabilitäten, die die Berechnungen im Paritätssektor behindern, welcher orthogonal zum Grundzustand ist. Wir diskutieren Ursachen und Indikatoren und schlagen Lösungen vor. Unsere Arbeit bestätigt, dass TN genutzt werden können, um den niederenergetischen Sektors des Modells zu erforschen. Dies eröffnet den Weg zu einem umfassenden Verständnis des Phasendiagramms. / Using tensor network (TN) techniques, we study the Hubbard model on a honeycomb lattice with a chemical potential, which models the electron structure of graphene. In contrast to Monte Carlo methods, TN algorithms do not suffer from the sign problem when a chemical potential is present. We demonstrate that a tensor network state can be used to simulate the model and present the calculated low energy properties of the Hubbard model. Our algorithm applies an imaginary time evolution to a fermionic projected entangled pair state (PEPS) on a finite lattice with open boundary conditions. The ansatz can be restricted to a specific fermionic parity sector which allows us to simulate the ground state and the state with one electron less. Several improvements of the algorithm developed in our work lead to a substantial performance increase of the efficiency and precision. We measure expectation values with a boundary matrix product state and show that observables can be calculated with a lower bond dimension of this approximation than expected from the literature. This decreases the numerical costs of the algorithm significantly. For varying onsite interactions and chemical potentials we calculate the energy, particle number and magnetization with good precision. We show the dependence of the particle number on the chemical potential and compute the single particle gap. We demonstrate the scalability to large lattices of up to 30 × 15 sites and make predictions in a part of the phase space that is not accessible to Monte Carlo methods. However, we also find limitations of the algorithm due to instabilities that spoil the calculations in the parity sector orthogonal to the ground state. We discuss the causes and indicators of such instabilities and propose solutions. Our work validates that TNs can be utilized to study the low energy properties of the Hubbard model on a honeycomb lattice with a chemical potential, thus opening the road to finally understand its phase diagram.
|
32 |
Ferromagnetismus und temperaturabhängige elektronische Struktur in metallischen FilmenHerrmann, Tomas 03 June 1999 (has links)
In der vorliegenden Arbeit wird der Einfluß der reduzierten Translationssymmetrie auf die magnetischen Eigenschaften in dünnen Filmen und an Oberflächen auf der Basis des stark korrelierten Hubbard-Modells untersucht. Zunächst wird die Möglichkeit von spontanem Ferromagnetismus im Hubbard-Modell für translationssymmetrische Systeme diskutiert.Verschiedene Näherungsmethoden zur Lösung des Vielteilchenproblems des Hubbard-Modells werden detailliert beschrieben und mit Ergeb nissen von Quanten-Monte-Carlo-Rechnungen verglichen. Die Konsistenz mit exakten Resultaten über die grobe Struktur der Ein-Teilchen-Spektraldichte im Limes starker Coulomb- Wechselwirkung zwischen den Elektronen erweist sich als essentiell wichtig für eine qualitativ korrekte Beschreibung von spontanem Ferromagnetismus. Das Temperaturverhalten in der ferromagnetischen Phase wird anhand von Magnetisierungs kurven sowie mit Hilfe des spinabhängigen Quasiteilchenspekt rums ausführlich diskutiert. Ein genaues Verständnis der Physik des Volumensystems liefert die Basis für den Übergang zu Systemen mit reduzierter Translationssymmetrie. Es wird eine Methode vorgestellt mit der sich approximative Theorien für das translationssymmetrische Hubbard-Modell auf die Behandlung von Filmsystemen verallgemeinern lassen. Die magnetischen Eigenschaften dünner Hubbard-Filme werden mit Hilfe der lagenabhängigen Magnetisierung als Funktion der Temperatur sowie der Filmdicke diskutiert. Die Abhängigkeit der Curie-Temperatur von der Filmdicke wird untersucht. Insbesondere wird auf die Frage nach der magnetischen Stabilität an der Oberfläche eingegangen. In stark korrelierten Elektronensystemen ist für endliche Temperaturen die magnetische Stabilität an der Oberfläche reduziert im Vergleich zu den inneren Lagen, obwohl auf der Basis des bekannten Stoner-Bildes für Bandmagnetismus genau der gegenteilige Trend zu erwarten wäre. Es wird gezeigt,daß sich dieses Verhalten anhand einfacher Argumente versteh en läßt. Die magnetischen Eigenschaften der Hubbard-Filme lassen sich im Detail mit Hilfe der lokalen Quasiteilchenzus tandsdichte sowie der wellenvektorabhängigen Spektraldichte analysieren. Die elektronische Struktur zeigt eine ausgeprägte Spin-, Lagen- und Temperaturabhängigkeit. In einem weiteren Teil der Arbeit wird der temperaturgetrieb ene Reorientierungsübergang der Magnetisierungsrichtung in dünnen metallischen Filmen untersucht. Dazu müssen die die Hubbard-Filme um anisotrope Beiträge der Dipol-Wechselwir kung und der Spin-Bahn-Wechsel wirkung erweitert werden. Das Wechselspiel von Dipol- und Spin-Bahn-Anisotropie führt unter gewissen Bedingungen zu einem Reorientierungsübergang als Funktion der Temperatur. Im Rahmen des hier vorgestellten Zugangs lassen sich sowohl Reorientierungsüber gänge von einer senkrechten in eine parallele Position ("Fe-artig") als auch Reorientierungsübergänge von einer parallelen in eine senkrechte Position ("Ni-artig") der Magnetisierung qualitativ korrekt beschreiben. / In this work the influence of the reduced translational symmetry on the magnetic properties of thin itinerant-electr on films and surfaces is investigated within the strongly correlated Hubbard model. Firstly, the possibility of spontaneous ferromagnetism in the Hubbard model is discussed for the case of systems with full translational symmetry. Different approximation schemes for the solution of the many -body problem of the Hubbard model are introduced and discussed in detail. It is found that it is vital for a reasonable description of spontaneous ferromagnetism to be consistent with exact results concerning the general shape of the single-electron spectral density in the limit of strong Coulomb interaction between the electrons. The temperature dependence of the ferromagnetic solutions is discussed in detail by use of the magnetization curves as well as the spin-dependent quasiparticle spectrum. For the investigation of thin films and surfaces the approximation schemes for the bulk system have to be generalized to deal with the reduced translational symmetry. The magnetic behavior of thin Hubbard films is investigated by use of the layer-dependent magnetization as a function of temperature as well as the thickness of the film. The Curie-temperature is calculated as a function of the film thickness. Further, the magnetic stability at the surface is discussed in detail. Here it is found that for strong Coulomb interaction the magnetic stability at finite temperatures is reduced at the surface compared to the inner layers. This observation clearly contradicts the well-known Stoner picture of bandmagnetism and can be explained in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction. The magnetic behavior of the Hubbard films can be analyzed in detail by inspecting the local quasiparticle density of states as well as the wave vector dependent spectral density. The electronic structure is found to be strongly spin-, layer-, and temperature- dependent. The last part of this work is concerned about the temperature-driven reorientation transition in thin metallic films. For the description of the magnetic anisotropy in thin films the dipole interaction as well as the spin-orbit interaction have to be included in the model. By calculating the temperature-dependence of the magnetic anisotropy energy it is found that both types of temperature-driven reorientation transitions, from out-of-plane to in-plane ("Fe-type") and from in-plane to out-of-plane ("Ni-type") magnetization are possible within the generalized Hubbard films.
|
33 |
Thermodynamic and spectral properties of quantum many-particle systems / Thermodynamische und spektrale Eigenschaften quantenmechanischer VielteilchensystemeFuchs, Sebastian 21 January 2011 (has links)
No description available.
|
Page generated in 0.0297 seconds