• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 212
  • 24
  • 18
  • 18
  • 10
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 380
  • 380
  • 308
  • 125
  • 105
  • 68
  • 63
  • 63
  • 57
  • 51
  • 50
  • 47
  • 45
  • 43
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Multi-Robot Coordination and Scheduling for Deactivation & Decommissioning

Zanlongo, Sebastian A. 02 November 2018 (has links)
Large quantities of high-level radioactive waste were generated during WWII. This waste is being stored in facilities such as double-shell tanks in Washington, and the Waste Isolation Pilot Plant in New Mexico. Due to the dangerous nature of radioactive waste, these facilities must undergo periodic inspections to ensure that leaks are detected quickly. In this work, we provide a set of methodologies to aid in the monitoring and inspection of these hazardous facilities. This allows inspection of dangerous regions without a human operator, and for the inspection of locations where a person would not be physically able to enter. First, we describe a robot equipped with sensors which uses a modified A* path-planning algorithm to navigate in a complex environment with a tether constraint. This is then augmented with an adaptive informative path planning approach that uses the assimilated sensor data within a Gaussian Process distribution model. The model's predictive outputs are used to adaptively plan the robot's path, to quickly map and localize areas from an unknown field of interest. The work was validated in extensive simulation testing and early hardware tests. Next, we focused on how to assign tasks to a heterogeneous set of robots. Task assignment is done in a manner which allows for task-robot dependencies, prioritization of tasks, collision checking, and more realistic travel estimates among other improvements from the state-of-the-art. Simulation testing of this work shows an increase in the number of tasks which are completed ahead of a deadline. Finally, we consider the case where robots are not able to complete planned tasks fully autonomously and require operator assistance during parts of their planned trajectory. We present a sampling-based methodology for allocating operator attention across multiple robots, or across different parts of a more sophisticated robot. This allows few operators to oversee large numbers of robots, allowing for a more scalable robotic infrastructure. This work was tested in simulation for both multi-robot deployment, and high degree-of-freedom robots, and was also tested in multi-robot hardware deployments. The work here can allow robots to carry out complex tasks, autonomously or with operator assistance. Altogether, these three components provide a comprehensive approach towards robotic deployment within the deactivation and decommissioning tasks faced by the Department of Energy.
212

Development Of Electrical And Control System Of An Unmanned Ground Vehicle For Force Feedback Teleoperation

Hacinecipoglu, Akif 01 September 2012 (has links) (PDF)
Teleoperation of an unmanned vehicle is a challenging task for human operators especially when the vehicle is out of line of sight. Improperly designed and applied display interfaces directly affect the operation performance negatively and even can result in catastrophic failures. If these teleoperation missions are human-critical then it becomes more important to improve the operator performance by decreasing workload, managing stress and improving situational awareness. This research aims to develop electrical and control system of an unmanned ground vehicle (UGV) using an All-Terrain Vehicle (ATV) and validate the development with investigation of the effects of force feedback devices on the teleoperation performance. After development, teleoperation tests are performed to verify that force feedback generated from the dynamic obstacle information of the environment improves teleoperation performance. Results confirm this statement and the developed UGV is verified for future research studies. Development of UGV, algorithms and real system tests are included in this thesis.
213

Adaptation of task-aware, communicative variance for motion control in social humanoid robotic applications

Gielniak, Michael Joseph 17 January 2012 (has links)
An algorithm for generating communicative, human-like motion for social humanoid robots was developed. Anticipation, exaggeration, and secondary motion were demonstrated as examples of communication. Spatiotemporal correspondence was presented as a metric for human-like motion, and the metric was used to both synthesize and evaluate motion. An algorithm for generating an infinite number of variants from a single exemplar was established to avoid repetitive motion. The algorithm was made task-aware by including the functionality of satisfying constraints. User studies were performed with the algorithm using human participants. Results showed that communicative, human-like motion can be harnessed to direct partner attention and communicate state information. Furthermore, communicative, human-like motion for social robots produced by the algorithm allows humans partners to feel more engaged in the interaction, recognize motion earlier, label intent sooner, and remember interaction details more accurately.
214

Human Intention Recognition Based Assisted Telerobotic Grasping of Objects in an Unstructured Environment

Khokar, Karan Hariharan 01 January 2013 (has links)
In this dissertation work, a methodology is proposed to enable a robot to identify an object to be grasped and its intended grasp configuration while a human is teleoperating a robot towards the desired object. Based on the detected object and grasp configuration, the human is assisted in the teleoperation task. The environment is unstructured and consists of a number of objects, each with various possible grasp configurations. The identification of the object and the grasp configuration is carried out in real time, by recognizing the intention of the human motion. Simultaneously, the human user is assisted to preshape over the desired grasp configuration. This is done by scaling the components of the remote arm end-effector motion that lead to the desired grasp configuration and simultaneously attenuating the components that are in perpendicular directions. The complete process occurs while manipulating the master device and without having to interact with another interface. Intention recognition from motion is carried out by using Hidden Markov Model (HMM) theory. First, the objects are classified based on their shapes. Then, the grasp configurations are preselected for each object class. The selection of grasp configurations is based on the human knowledge of robust grasps for the various shapes. Next, an HMM for each object class is trained by having a skilled teleoperator perform repeated preshape trials over each grasp configuration of the object class in consideration. The grasp configurations are modeled as the states of each HMM whereas the projections of translation and orientation vectors, over each reference vector, are modeled as observations. The reference vectors are the ideal translation and rotation trajectories that lead the remote arm end-effector towards a grasp configuration. During an actual grasping task performed by a novice or a skilled user, the trained model is used to detect their intention. The output probability of the HMM associated with each object in the environment is computed as the user is teleoperating towards the desired object. The object that is associated with the HMM which has the highest output probability, is taken as the desired object. The most likely Viterbi state sequence of the selected HMM gives the desired grasp configuration. Since an HMM is associated with every object, objects can be shuffled around, added or removed from the environment without the need to retrain the models. In other words, the HMM for each object class needs to be trained only once by a skilled teleoperator. The intention recognition algorithm was validated by having novice users, as well as the skilled teleoperator, grasp objects with different grasp configurations from a dishwasher rack. Each object had various possible grasp configurations. The proposed algorithm was able to successfully detect the operator's intention and identify the object and the grasp configuration of interest. This methodology of grasping was also compared with unassisted mode and maximum-projection mode. In the unassisted mode, the operator teleoperated the arm without any assistance or intention recognition. In the maximum-projection mode, the maximum projection of the motion vectors was used to determine the intended object and the grasp configuration of interest. Six healthy and one wheelchair-bound individuals, each executed twelve pick-and-place trials in intention-based assisted mode and unassisted mode. In these trials, they picked up utensils from the dishwasher and laid them on a table located next to it. The relative positions and orientations of the utensils were changed at the end of every third trial. It was observed that the subjects were able to pick-and-place the objects 51% faster and with less number of movements, using the proposed method compared to the unassisted method. They found it much easier to execute the task using the proposed method and experienced less mental and overall workloads. Two able-bodied subjects also executed three preshape trials over three objects in intention-based assisted and maximum projection mode. For one of the subjects, the objects were shuffled at the end of the six trials and she was asked to carry out three more preshape trials in the two modes. This time, however, the subject was made to change their intention when she was about to preshape to the grasp configurations. It was observed that intention recognition was consistently accurate through the trajectory in the intention-based assisted method except at a few points. However, in the maximum-projection method the intention recognition was consistently inaccurate and fluctuated. This often caused to subject to be assisted in the wring directions and led to extreme frustration. The intention-based assisted method was faster and had less hand movements. The accuracy of the intention based method did not change when the objects were shuffled. It was also shown that the model for intention recognition can be trained by a skilled teleoperator and be used by a novice user to efficiently execute a grasping task in teleoperation.
215

RSVP: An investigation of the effects of Remote Shared Visual Presence on team process and team performance in urban search and rescue teams

Burke, Jennifer L 01 June 2006 (has links)
This field study presents mobile rescue robots as a way of augmenting communication in distributed teams through a remote shared visual presence (RSVP) consisting of the robot's view. It examines the effects of RSVP on team mental models, team processes, and team performance in collocated and distributed Urban Search & Rescue (US&R) technical search teams, and tests two models of team performance. Participants (n=50) were US&R task force personnel drawn from high-fidelity training exercises held in California (2004) and New Jersey (2005). Data were collected from the 25 dyadic teams as they performed a 2 x 2 repeated measures search task entailing robot-assisted search in a confined space rubble pile. Team communication was analyzed using the Robot-Assisted Search and Rescue coding scheme (RASAR-CS). Team mental models were measured through a team-constructed map of the search process. Ratings of team processes (communication, support, leadership, and situation awareness) were made by onsite observers, and team performance was measured by number of victims (mannequins) found. Multilevel regression analyses were used to predict team mental models, team process, and team performance based upon use of RSVP (RSVP or no-RSVP) and location of team members (distributed or collocated). Results indicated that the use of RSVP technology predicted team performance (Ã?=-1.322, p = 0.05), but not team mental models or team process. Location predicted team mental models (Ã?=-0.425, p = 0.05), but not as expected. Distributed teams had richer team mental models as measured by map ratings. No significant differences emerged between collocated and distributed teams in team process or team performance. Findings suggest RSVP may enhance team performance in US&R search tasks. However, results are complicated by differences detected between sites. Support was found for both models of team performance, but neither model was found sufficient to describe the data. Further research is suggested in the use of RSVP technology, the exploration of team mental models, and refinement of a modified model of team performance in extreme environments.
216

Motor interference and behaviour adaptation in human-humanoid interactions

Shen, Qiming January 2013 (has links)
This thesis proposes and experimentally demonstrates an approach enabling a humanoid robot to adapt its behaviour to match a human’s behaviour in real-time human-humanoid interaction. The approach uses the information distance synchrony detection method, which is a novel method to measure the behaviour synchrony between two agents, as the core part of the behaviour adaptation mechanism to guide the humanoid robot to change its behaviour in the interaction. The feedback of the participants indicated that the application of this behaviour adaptation mechanism could facilitate human-humanoid interaction. The investigation of motor interference, which may be adopted as a possible metric to quantify the social competence of a robot, is also presented in this thesis. The results from two experiments indicated that both human participants’ beliefs about the engagement of the robot and the usage of rhythmic music might affect the elicitation of the motor interference effects. Based on these findings and recent research supporting the importance of other features in eliciting the interference effects, it can be hypothesized that the overall perception of a humanoid robot as a social entity instead of any individual feature of the robot is critical to elicit motor interference in a human observer’s behaviour. In this thesis, the term ‘overall perception’ refers to the human observer’s overall perception of the robot in terms of appearance, behaviour, the observer’s belief and environmental features that may affect the perception. Moreover, it was found in the motor coordination investigation that humans tended to synchronize themselves with a humanoid robot without being instructed to do so. This finding, together with the behaviour adaptation mechanism, may support the feasibility of bi-directional motor coordination in human-humanoid interaction.
217

Cognitive Interactive Robot Learning

Fonooni, Benjamin January 2014 (has links)
Building general purpose autonomous robots that suit a wide range of user-specified applications, requires a leap from today's task-specific machines to more flexible and general ones. To achieve this goal, one should move from traditional preprogrammed robots to learning robots that easily can acquire new skills. Learning from Demonstration (LfD) and Imitation Learning (IL), in which the robot learns by observing a human or robot tutor, are among the most popular learning techniques. Showing the robot how to perform a task is often more natural and intuitive than figuring out how to modify a complex control program. However, teaching robots new skills such that they can reproduce the acquired skills under any circumstances, on the right time and in an appropriate way, require good understanding of all challenges in the field. Studies of imitation learning in humans and animals show that several cognitive abilities are engaged to learn new skills correctly. The most remarkable ones are the ability to direct attention to important aspects of demonstrations, and adapting observed actions to the agents own body. Moreover, a clear understanding of the demonstrator's intentions and an ability to generalize to new situations are essential. Once learning is accomplished, various stimuli may trigger the cognitive system to execute new skills that have become part of the robot's repertoire. The goal of this thesis is to develop methods for learning from demonstration that mainly focus on understanding the tutor's intentions, and recognizing which elements of a demonstration need the robot's attention. An architecture containing required cognitive functions for learning and reproduction of high-level aspects of demonstrations is proposed. Several learning methods for directing the robot's attention and identifying relevant information are introduced. The architecture integrates motor actions with concepts, objects and environmental states to ensure correct reproduction of skills. Another major contribution of this thesis is methods to resolve ambiguities in demonstrations where the tutor's intentions are not clearly expressed and several demonstrations are required to infer intentions correctly. The provided solution is inspired by human memory models and priming mechanisms that give the robot clues that increase the probability of inferring intentions correctly. In addition to robot learning, the developed techniques are applied to a shared control system based on visual servoing guided behaviors and priming mechanisms. The architecture and learning methods are applied and evaluated in several real world scenarios that require clear understanding of intentions in the demonstrations. Finally, the developed learning methods are compared, and conditions where each of them has better applicability are discussed. / Att bygga autonoma robotar som passar ett stort antal olika användardefinierade applikationer kräver ett språng från dagens specialiserade maskiner till mer flexibla lösningar. För att nå detta mål, bör man övergå från traditionella förprogrammerade robotar till robotar som själva kan lära sig nya färdigheter. Learning from Demonstration (LfD) och Imitation Learning (IL), där roboten lär sig genom att observera en människa eller en annan robot, är bland de mest populära inlärningsteknikerna. Att visa roboten hur den ska utföra en uppgift är ofta mer naturligt och intuitivt än att modifiera ett komplicerat styrprogram. Men att lära robotar nya färdigheter så att de kan reproducera dem under nya yttre förhållanden, på rätt tid och på ett lämpligt sätt, kräver god förståelse för alla utmaningar inom området. Studier av LfD och IL hos människor och djur visar att flera kognitiva förmågor är inblandade för att lära sig nya färdigheter på rätt sätt. De mest anmärkningsvärda är förmågan att rikta uppmärksamheten på de relevanta aspekterna i en demonstration, och förmågan att anpassa observerade rörelser till robotens egen kropp. Dessutom är det viktigt att ha en klar förståelse av lärarens avsikter, och att ha förmågan att kunna generalisera dem till nya situationer. När en inlärningsfas är slutförd kan stimuli trigga det kognitiva systemet att utföra de nya färdigheter som blivit en del av robotens repertoar. Målet med denna avhandling är att utveckla metoder för LfD som huvudsakligen fokuserar på att förstå lärarens intentioner, och vilka delar av en demonstration som ska ha robotens uppmärksamhet. Den föreslagna arkitekturen innehåller de kognitiva funktioner som behövs för lärande och återgivning av högnivåaspekter av demonstrationer. Flera inlärningsmetoder för att rikta robotens uppmärksamhet och identifiera relevant information föreslås. Arkitekturen integrerar motorkommandon med begrepp, föremål och omgivningens tillstånd för att säkerställa korrekt återgivning av beteenden. Ett annat huvudresultat i denna avhandling rör metoder för att lösa tvetydigheter i demonstrationer, där lärarens intentioner inte är klart uttryckta och flera demonstrationer är nödvändiga för att kunna förutsäga intentioner på ett korrekt sätt. De utvecklade lösningarna är inspirerade av modeller av människors minne, och en primingmekanism används för att ge roboten ledtrådar som kan öka sannolikheten för att intentioner förutsägs på ett korrekt sätt. De utvecklade teknikerna har, i tillägg till robotinlärning, använts i ett halvautomatiskt system (shared control) baserat på visuellt guidade beteenden och primingmekanismer. Arkitekturen och inlärningsteknikerna tillämpas och utvärderas i flera verkliga scenarion som kräver en tydlig förståelse av mänskliga intentioner i demonstrationerna. Slutligen jämförs de utvecklade inlärningsmetoderna, och deras applicerbarhet under olika förhållanden diskuteras. / INTRO
218

Modèles profonds de régression et applications à la vision par ordinateur pour l'interaction homme-robot / Deep Regression Models and Computer Vision Applications for Multiperson Human-Robot Interaction

Lathuiliere, Stéphane 22 May 2018 (has links)
Dans le but d’interagir avec des êtres humains, les robots doivent effectuer destâches de perception basique telles que la détection de visage, l’estimation dela pose des personnes ou la reconnaissance de la parole. Cependant, pour interagir naturellement, avec les hommes, le robot doit modéliser des conceptsde haut niveau tels que les tours de paroles dans un dialogue, le centre d’intérêtd’une conversion, ou les interactions entre les participants. Dans ce manuscrit,nous suivons une approche ascendante (dite “top-down”). D’une part, nousprésentons deux méthodes de haut niveau qui modélisent les comportementscollectifs. Ainsi, nous proposons un modèle capable de reconnatre les activitésqui sont effectuées par différents des groupes de personnes conjointement, telsque faire la queue, discuter. Notre approche gère le cas général où plusieursactivités peuvent se dérouler simultanément et en séquence. D’autre part,nous introduisons une nouvelle approche d’apprentissage par renforcement deréseau de neurones pour le contrôle de la direction du regard du robot. Notreapproche permet à un robot d’apprendre et d’adapter sa stratégie de contrôledu regard dans le contexte de l’interaction homme-robot. Le robot est ainsicapable d’apprendre à concentrer son attention sur des groupes de personnesen utilisant seulement ses propres expériences (sans supervision extérieur).Dans un deuxième temps, nous étudions en détail les approchesd’apprentissage profond pour les problèmes de régression. Les problèmesde régression sont cruciaux dans le contexte de l’interaction homme-robotafin d’obtenir des informations fiables sur les poses de la tête et du corpsdes personnes faisant face au robot. Par conséquent, ces contributions sontvraiment générales et peuvent être appliquées dans de nombreux contextesdifférents. Dans un premier temps, nous proposons de coupler un mélangegaussien de régressions inverses linéaires avec un réseau de neurones convolutionnels. Deuxièmement, nous introduisons un modèle de mélange gaussien-uniforme afin de rendre l’algorithme d’apprentissage plus robuste aux annotations bruitées. Enfin, nous effectuons une étude à grande échelle pour mesurerl’impact de plusieurs choix d’architecture et extraire des recommandationspratiques lors de l’utilisation d’approches d’apprentissage profond dans destâches de régression. Pour chacune de ces contributions, une intense validation expérimentale a été effectuée avec des expériences en temps réel sur lerobot NAO ou sur de larges et divers ensembles de données. / In order to interact with humans, robots need to perform basic perception taskssuch as face detection, human pose estimation or speech recognition. However, in order have a natural interaction with humans, the robot needs to modelhigh level concepts such as speech turns, focus of attention or interactions between participants in a conversation. In this manuscript, we follow a top-downapproach. On the one hand, we present two high-level methods that model collective human behaviors. We propose a model able to recognize activities thatare performed by different groups of people jointly, such as queueing, talking.Our approach handles the general case where several group activities can occur simultaneously and in sequence. On the other hand, we introduce a novelneural network-based reinforcement learning approach for robot gaze control.Our approach enables a robot to learn and adapt its gaze control strategy inthe context of human-robot interaction. The robot is able to learn to focus itsattention on groups of people from its own audio-visual experiences.Second, we study in detail deep learning approaches for regression prob-lems. Regression problems are crucial in the context of human-robot interaction in order to obtain reliable information about head and body poses or theage of the persons facing the robot. Consequently, these contributions are really general and can be applied in many different contexts. First, we proposeto couple a Gaussian mixture of linear inverse regressions with a convolutionalneural network. Second, we introduce a Gaussian-uniform mixture model inorder to make the training algorithm more robust to noisy annotations. Finally,we perform a large-scale study to measure the impact of several architecturechoices and extract practical recommendations when using deep learning approaches in regression tasks. For each of these contributions, a strong experimental validation has been performed with real-time experiments on the NAOrobot or on large and diverse data-sets.
219

Human-like Crawling for Humanoid Robots : Gait Evaluation on the NAO robot

Aspernäs, Andreas January 2018 (has links)
Human-robot interaction (HRI) is the study of how we as humans interact and communicate with robots and one of its subfields is working on how we can improve the collaboration between humans and robots. We need robots that are more user friendly and easier to understand and a key aspect of this is human-like movements and behavior. This project targets a specific set of motions called locomotion and tests them on the humanoid NAO robot. A human-like crawling gait was developed for the NAO robot and compared to the built-in walking gait through three kinds of experiments. The first one to compare the speed of the two gaits, the second one to estimate their sta- bility, and the third to examine how long they can operate by measuring the power consumption and temperatures in the joints. The results showed the robot was significantly slower when crawling compared to walking, and when still the robot was more stable while standing than on all-fours. The power consumption remained essentially the same, but the crawling gait ended up having a shorter operational time due to higher temperature increase in the joints. While the crawling gait has benefits of having a lower profile then the walking gait and could therefore more easily pass under low hanging obsta- cles, it does have major issues that needs to be addressed to become a viable solution. Therefore these are important factors to consider when developing gaits and designing robots, and motives further research to try and solve these problems.
220

Analyse audio-visuelle dans le cadre des interactions humaines avec les robots / Audio-Visual Analysis In the Framework of Humans Interacting with Robots

Gebru, Israel Dejene 13 April 2018 (has links)
Depuis quelques années, un intérêt grandissant pour les interactions homme-robot (HRI), avec pour but de développer des robots pouvant interagir (ou plus généralement communiquer) avec des personnes de manière naturelle. Cela requiert aux robots d'avoir la capacité non seulement de comprendre une conversation et signaux non verbaux associés à la communication (e.g. le regard et les expressions du visage), mais aussi la capacité de comprendre les dynamiques des interactions sociales, e.g. détecter et identifier les personnes présentes, où sont-elles, les suivre au cours de la conversation, savoir qui est le locuteur, à qui parle t-il, mais aussi qui regarde qui, etc. Tout cela nécessite aux robots d’avoir des capacités de perception multimodales pour détecter et intégrer de manière significative les informations provenant de leurs multiples canaux sensoriels. Dans cette thèse, nous nous concentrons sur les entrées sensorielles audio-visuelles du robot composées de microphones (multiples) et de caméras vidéo. Dans cette thèse nous nous concentrons sur trois tâches associés à la perception des robots, à savoir : (P1) localisation de plusieurs locuteurs, (P2) localisation et suivi de plusieurs personnes, et (P3) journalisation de locuteur. La majorité des travaux existants sur le traitement du signal et de la vision par ordinateur abordent ces problèmes en utilisant uniquement soit des signaux audio ou des informations visuelles. Cependant, dans cette thèse, nous prévoyons de les aborder à travers la fusion des informations audio et visuelles recueillies par deux microphones et une caméra vidéo. Notre objectif est d'exploiter la nature complémentaire des modalités auditive et visuelle dans l'espoir d'améliorer de manière significatives la robustesse et la performance par rapport aux systèmes utilisant une seule modalité. De plus, les trois problèmes sont abordés en considérant des scénarios d'interaction Homme-Robot difficiles comme, par exemple, un robot engagé dans une interaction avec un nombre variable de participants, qui peuvent parler en même temps et qui peuvent se déplacer autour de la scène et tourner la tête / faire face aux autres participants plutôt qu’au robot. / In recent years, there has been a growing interest in human-robot interaction (HRI), with the aim to enable robots to naturally interact and communicate with humans. Natural interaction implies that robots not only need to understand speech and non-verbal communication cues such as body gesture, gaze, or facial expressions, but they also need to understand the dynamics of the social interplay, e.g., find people in the environment, distinguish between different people, track them through the physical space, parse their actions and activity, estimate their engagement, identify who is speaking, who speaks to whom, etc. All these necessitate the robots to have multimodal perception skills to meaningfully detect and integrate information from their multiple sensory channels. In this thesis, we focus on the robot's audio-visual sensory inputs consisting of the (multiple) microphones and video cameras. Among the different addressable perception tasks, in this thesis we explore three, namely; (P1) multiple speakers localization, (P2) multiple-person location tracking, and (P3) speaker diarization. The majority of existing works in signal processing and computer vision address these problems by utilizing audio signals alone, or visual information only. However, in this thesis, we plan to address them via fusion of the audio and visual information gathered by two microphones and one video camera. Our goal is to exploit the complimentary nature of the audio and visual modalities with a hope of attaining significant improvements on robustness and performance over systems that use a single modality. Moreover, the three problems are addressed considering challenging HRI scenarios such as, eg a robot engaged in a multi-party interaction with varying number of participants, which may speak at the same time as well as may move around the scene and turn their heads/faces towards the other participants rather than facing the robot.

Page generated in 0.0372 seconds