• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Untersuchung zur Praxis der Atemgasklimatisierung auf deutschen Intensivstationen. Eine nationale Studie. / Study on the medical practice of conditioning the respiratory air on German intensive care units

Glismann, Tobias Michael 06 March 2012 (has links)
No description available.
12

An Investigation of Low Temperature Direct Propane Fuel Cells

Parackal, Bhavana January 2017 (has links)
This research is directed toward the investigation of a low temperature direct propane fuel cell (DPFC). Modeling included a parametric study of a direct propane fuel cell using computational fluid dynamics (CFD), specifically FreeFem++ software. Polarization curves predicted by the CFD model were used to understand fuel cell performance. The predictions obtained from the computational fluid dynamics mathematical model for the fuel cell were compared with experimental results. The computational work identified some critical parameters (exchange current density, pressure, temperature) for improving the overall performance of the fuel cell. The model predictions clearly highlighted the role of catalysts in significantly enhancing the overall performance of a DPFC. Experiments were performed using commercial Nafion-Pt based membrane electrode assemblies (MEAs) to obtain a basis for comparison. It is the first report in the literature that a Pt-Ru (Platinum-Ruthenium) MEA was used in the investigation of a DPFC. Also, it was the first study that fed liquid water continuously to a DPFC by using interdigitated flow field (IDFF) at the anode to humidify the dry propane feed gas. During the experiments oscillations were observed at very low current densities i.e. in nA/cm2, which is a rare case and not reported in the literature to date. This observation has raised serious concerns about the existence of absolute open-circuit cell potential difference for a DPFC. The cycling behaviour observed with DPFC indicated the presence of a continuous degradation-regeneration process of the catalyst surface near open-circuit potential. The experimental work further evaluated the performance of fuel cell by measurement of polarization curves.
13

Adiabatické chlazení vzduchu / Adiabatic air cooling

Silbernágl, Petr January 2016 (has links)
The diploma thesis deals deals with the designing and assessment of the two variants of cooling and humidifying the air in the production hall for cotton in Humpolec. The system is proposed to fulfil hygienic, operational, economic and functional requirements for indoor microclimate of the production hall. The task of this system is the transport of cooler air to interior and the covering of heat gains all year round. The equipment is also designed for the regulation of air humidity in the interior. The theoretical part is devoted to air humidification and air humidification device. Calculation of the project and then a specific proposal, two variants for air distribution level studies. Both variants are treated as project documentation. Experimental part is devoted to the measurement on the measuring path containing adiabatic humidifier in the laboratory. The benefit of the experiment is to verify the data from the manufacturer adiabatic humidifier which we can assess the practical use of the product.
14

Caractérisation d’un système pile à combustible en vue de garantir son démarrage et fonctionnement à température ambiante négative / Characterization of a fuel cell system in order to enable its start-up and working at negative ambient temperature

Reguillet, Vincent 24 June 2013 (has links)
La pile à combustible est un générateur électrique en voie d'atteindre une maturité technologique et commerciale. Pour que ce moyen de production d'énergie puisse concurrencer des systèmes similaires, tels que les batteries et les groupes électrogènes, des obstacles restent néanmoins à franchir. L'un d'entre eux est la capacité de la pile à démarrer et fonctionner à température ambiante négative. Afin d'étudier le comportement à froid d'un système de type PEMFC, nous proposons la définition de plusieurs critères de performances exergétiques adaptés au fonctionnement de chaque module du système. Les modules sont ensuite caractérisés à température ambiante négative à l'aide de bancs d'essais dédiés. A partir des résultats expérimentaux obtenus, différents modèles empiriques ou semi-analytiques sont alors présentés pour la batterie, le compresseur et l'humidificateur. D'autre part, un modèle analytique thermique à l'échelle des stacks est réalisé. Il permet notamment de reproduire l'élévation en température de la pile au cours d'un démarrage à froid. Enfin, à l'issue de l'analyse des résultats expérimentaux et des modèles, des recommandations destinées à favoriser le démarrage à froid du système sont fournies. En suivant ces recommandations, il est ainsi possible de démarrer le système pile de manière fiable à une température ambiante de -10 °C. / Fuel cells are electric generators on the way to achieve technological and commercial maturity. Nevertheless, to compete with similar energy generating systems such as batteries and engines generators, fuel cells must overcome several obstacles. Among them, the ability to start at negative ambient temperatures is decisive. In order to study the behaviour of a PEMFC system in cold weather, we propose different exergetic criteria adapted to the working conditions of each module. Thanks to dedicated test benches, the modules are then characterized at negative ambient temperature. From experimental results, empirical or semi-analytical models are introduced for the battery, the compressor and the humidifier. On the other hand, a thermal analytical model at the stacks scale is developed. It enables to reproduce the fuel cell temperature rise during a cold start up. Eventually, at the end of the analysis of experimental results and models, recommendations are given to favour the cold start of the system. By following these recommendations, the fuel cell cold start at -10 °C is ensured.
15

A Component-based Model of a Fuel Cell Vehicle System

Salomonsson, David, Eng, Erik January 2021 (has links)
Improving the efficiency and performance of vehicle propulsion systems has always been desirable, and with increasing environmental awareness this has become increasingly topical. A particularly strong focus today is at fossil-free alternatives, and there is a strong trend for electrification. Hybrid powertrains of different types can bring benefits in certain aspects, and there is a lot of research and development involved in the making of a new powertrain. In this thesis, a complete powertrain for a fuel cell hybrid electric vehicle is modeled, with the intention of contributing to this trend. The model can be used to investigate design choices and their impact on energy consumption. A component-based library is developed, with the purpose of being easy to implement for different configurations. The results show that it is possible to assemble and simulate a complete hybrid drivetrain, using the modeled components, while not being very computationally heavy. The developed models correspond well with reality while being modular and easy to implement.

Page generated in 0.0278 seconds