• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Examination of Gain Scheduling and Fuzzy Controllers with Hybrid Reachability

Fifarek, Aaron W. January 2018 (has links)
No description available.
12

Provable Run Time Safety Assurance for a Non-Linear System

Snyder, Cory Firmin 31 May 2013 (has links)
No description available.
13

Supervisory Hybrid Control of a Wind Energy Conversion and Battery Storage System

Khan, Muhammad Shahid 31 July 2008 (has links)
This thesis presents a supervisory hybrid controller for the automatic operation and control of a wind energy conversion and battery storage system. The supervisory hybrid control scheme is based on a radically different approach of modeling and control design, proposed for the subject wind energy conversion and battery storage system. The wind energy conversion unit is composed of a 360kW horizontal axis wind turbine mechanically coupled to an induction generator through a gearbox. The assembly is electrically interfaced to the dc bus through a thyristor-controlled rectifier to enable variable speed operation of the unit. Static capacitor banks have been used to meet reactive power requirements of the unit. A battery storage device is connected to the dc bus through a dc-dc converter to support operation of the wind energy conversion unit during islanded conditions. Islanding is assumed to occur when the tiebreaker to the utility feeder is in open position. The wind energy conversion unit and battery storage system is interfaced to the utility grid at the point of common coupling through a 25km long, 13.8kV feeder using a voltage-sourced converter unit. A bank of static (constant impedance) and dynamic (induction motor) loads is connected to the point of common coupling through a step down transformer. A finite hybrid-automata based model of the wind energy conversion and storage system has been proposed that captures the different operating regimes of the system during grid-connected and in islanded operating modes. The hybrid model of the subject system defines allowable operating states and predefines the transition paths between these operating states. A modular control design approach has been adapted in which the wind energy conversion and storage system has been partitioned along the dc bus into three independent system modules. Traditional control schemes using linear proportional-plus-integral compensators have been used for each system module with suitable modifications where necessary in order to achieve the required steady state and transient performance objectives. A supervisory control layer has been used to combine and configure control schemes of the three system modules to suite the requirements of system operation during any one operating state depicted by the hybrid model of the system. Transition management strategies have been devised and implemented through the supervisory control layer to ensure smooth inter-state transitions and bumpless switching among controllers. It has been concluded based on frequency domain linear analysis and time domain electromagnetic transient simulations that the proposed supervisory hybrid controller is capable of operating the wind energy conversion and storage system in both grid-connected and in islanded modes under changing operating conditions including temporary faults on the utility grid.
14

Supervisory Hybrid Control of a Wind Energy Conversion and Battery Storage System

Khan, Muhammad Shahid 31 July 2008 (has links)
This thesis presents a supervisory hybrid controller for the automatic operation and control of a wind energy conversion and battery storage system. The supervisory hybrid control scheme is based on a radically different approach of modeling and control design, proposed for the subject wind energy conversion and battery storage system. The wind energy conversion unit is composed of a 360kW horizontal axis wind turbine mechanically coupled to an induction generator through a gearbox. The assembly is electrically interfaced to the dc bus through a thyristor-controlled rectifier to enable variable speed operation of the unit. Static capacitor banks have been used to meet reactive power requirements of the unit. A battery storage device is connected to the dc bus through a dc-dc converter to support operation of the wind energy conversion unit during islanded conditions. Islanding is assumed to occur when the tiebreaker to the utility feeder is in open position. The wind energy conversion unit and battery storage system is interfaced to the utility grid at the point of common coupling through a 25km long, 13.8kV feeder using a voltage-sourced converter unit. A bank of static (constant impedance) and dynamic (induction motor) loads is connected to the point of common coupling through a step down transformer. A finite hybrid-automata based model of the wind energy conversion and storage system has been proposed that captures the different operating regimes of the system during grid-connected and in islanded operating modes. The hybrid model of the subject system defines allowable operating states and predefines the transition paths between these operating states. A modular control design approach has been adapted in which the wind energy conversion and storage system has been partitioned along the dc bus into three independent system modules. Traditional control schemes using linear proportional-plus-integral compensators have been used for each system module with suitable modifications where necessary in order to achieve the required steady state and transient performance objectives. A supervisory control layer has been used to combine and configure control schemes of the three system modules to suite the requirements of system operation during any one operating state depicted by the hybrid model of the system. Transition management strategies have been devised and implemented through the supervisory control layer to ensure smooth inter-state transitions and bumpless switching among controllers. It has been concluded based on frequency domain linear analysis and time domain electromagnetic transient simulations that the proposed supervisory hybrid controller is capable of operating the wind energy conversion and storage system in both grid-connected and in islanded modes under changing operating conditions including temporary faults on the utility grid.
15

Metodologia de análise de sistemas de proteção com controle distribuído através da ferramenta de modelagem e verificação formal estatística / Metodologyfor power system protection abalisys based on statistical model checking

Santos, Felipe Crestani dos 17 November 2017 (has links)
Submitted by Miriam Lucas (miriam.lucas@unioeste.br) on 2018-02-22T14:23:15Z No. of bitstreams: 2 Felipe_Crestani_dos_Santos_2017.pdf: 5495370 bytes, checksum: 82f81445874bba45497cda5c8d784d2f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-02-22T14:23:15Z (GMT). No. of bitstreams: 2 Felipe_Crestani_dos_Santos_2017.pdf: 5495370 bytes, checksum: 82f81445874bba45497cda5c8d784d2f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-11-17 / The main line of research of this work is the study of approaches for supporting the development and analysis of the Power System Protection. In general, this process is carried out through of a large number of simulations involving various operating scenarios. The main limitation of this technique is the impossibility of coverage of all behavior of the system under analysis. In this context, this work proposes the use of Model Checking as a tool to support the procedure of development of power system protection schemes, principally in the sense of proving the security requirements and temporal deterministic expected behavior. Model Checking is a verification technique that explores exhaustively and automatically all possible system states, checking if this model meets a given specification. This work focuses on this two pillars of the Model Checking: to choose an appropriate modeling formalism for representation of the power system protection and how to describe the specification in temporal-logic for the verification process. With regard to the modeling formalism, the power system protection will be represented by the Hybrid Automata theory, while the verification tool adopted will be Statistical Model Checking, by the UPPAAL STRATEGO toolkit. It is underlined that this work is limited to the modeling of individual components of the power system protection, such that 18 models of the devices and protocols like communication bus (LAN), time synchronization protocol (PTP) and IEC 61850 communication protocols (SV and GOOSE) and Logical Nodes of power system protection, and 13 auxiliaries models, which emules the stochastic behavior to subsidise the verification process. The methodology of modelling adopted guarantees the effective representation of the components behaviour of power system protection. For this, the results of Model Checking process were compared with behavioral requirements defined by standards, conformance testings and paper related to the area. With regard to the contributions of this work, were identified three researches areas that could use the models developed in this work: i) implementation of power system protection schemes; ii) achievement of conformance testing; and iii) indication of the parameterization error of the power protection system scheme. / A linha de pesquisa abordada neste trabalho aponta para o estudo e desenvolvimento de ferramentas que subsidiem a proposição e validação de Sistemas de Proteção de Sistemas de Energia Elétrica. Em geral, este processo é realizado mediante simulações computacionais envolvendo diversos cenários de operação e distúrbios, tendo como principal limitação a impossibilidade de representar todos os caminhos de evolução do sistema em análise. Nesse contexto, propõe-se o emprego da técnica de Modelagem e Verificação Formal como ferramenta de suporte ao projeto, análise e implementação de estratégias de proteção, principalmente no sentido de comprovar se a estratégia atende os requisitos de segurança e comportamento determinístico temporal esperado. Em síntese, o método consiste na verificação de propriedades descritas em lógicas temporais, sob uma abstração apropriada (formalismo) do comportamento do sistema. Esta dissertação possui enfoque nestes dois requisitos: modelagem do sistema de proteção através de um formalismo adequado e tradução dos requisitos do comportamento desejado em propriedades descritas em lógica temporal. Com relação ao formalismo de apoio, a modelagem do sistema de proteção é baseada em uma abstração de Autômatos Temporizados Híbridos. Como ferramenta de validação, adota-se a técnica de Verificação Formal Estatística, através do software UPPAAL STRATEGO. Salienta-se que este trabalho se delimita apenas na modelagem e validação individual dos principais equipamentos de um sistema de proteção, sendo 18 modelos de dispositivos e protocolos como barramentos de comunicação (LAN), protocolo de sincronização de tempo PTP, protocolos de comunicação baseados em IEC 61850 e funções de proteção, e 13 modelos auxiliares que implementam um comportamento estocástico para subsidiar o processo de validação do sistema de proteção. O desenvolvimento dos modelos se deu através de uma abordagem sistemática envolvendo processos de simulação e verificação das propriedades sob o modelo em análise. Através desta metodologia, garante-se que os modelos desenvolvidos representam o comportamento esperado de seus respectivos dispositivos. Para isso, os resultados do processo de verificação foram comparados com requisitos comportamentais definidos por normas, testes de conformidade em equipamentos/protocolos e trabalhos acadêmicos vinculados à área. Com relação às contribuições do trabalho, identificou-se três linhas de pesquisa que podem fazer o uso dos modelos desenvolvidos: i) implementação de novas estratégias de proteção; ii) realização de testes de conformidade em equipamentos externos à rede de autômatos; e iii) indicação de erros de parametrização do sistema de proteção.
16

Verificação formal aplicada à análise de confiabilidade de sistemas hidráulicos / Formal verification applied to reliability analysis of hydraulic systems

Bozz, Claudia Beatriz 26 July 2018 (has links)
Submitted by Wagner Junior (wagner.junior@unioeste.br) on 2018-11-30T17:04:04Z No. of bitstreams: 2 Claudia_Beatriz_Bozz_2018.pdf: 4791914 bytes, checksum: 0affba2e984ec7e6beefa83d0c3bdfeb (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-11-30T17:04:04Z (GMT). No. of bitstreams: 2 Claudia_Beatriz_Bozz_2018.pdf: 4791914 bytes, checksum: 0affba2e984ec7e6beefa83d0c3bdfeb (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-07-26 / Real time systems that have continuous behavior associated with discrete elements are called hybrid systems. Among them, in this master’s research, a hydraulic system has been chosen as an object of study in order to perform the reliability analysis of it through modeling and formal verification. Much as several models for the reliability analysis of complex systems have been proposed in the literature, most of them are not suitable to represent the system when its behavior needs to be expressed by means of continuous variables, like the case of hybrid systems. Generally, simulation and experimental testing are used to analyze systems, and they give only approximate results from a large amount of samples. To eliminate the limitations of these techniques, the formal verification is an effective alternative, since it is characterized by performing a sweep in all possible states of the system automatically, verifying the behavior as a whole. The UPPAAL STRATEGO toolkit for modelling by stochastic hybrid automata and model checking has been used in this work, both classic formal verification and statistical formal verification. A benckmark has been used as object of study. Initially, the system has been modelling and its behavior (physical and controlled) verified through simulation and formal verification (property specification and model checking). The reliability parameters obtained in the statistical analysis of the system failures have been compared with results of literature, presenting a dispersion less than 2.5%, so it can be verify that the methodology used and the models constructed were adequate to analyze the reliability of this system hybrid.In a second step of this work, the probability distribution of failure of the components have been modified, in order to become the system more reliable with real hydraulic systems, and estimate the optimum mean time between maintenance (MTBM) of this system. Thus, it’s possible to conclude that the methodology is adequate to perform the reliability analysis of the hydraulic system, being that model checking is effective to estimate the reliability parameters of the hydraulic system. / Sistemas de tempo real que possuem comportamento contínuo associado com elementos de características discretas são chamados de sistemas híbridos. Dentre estes, nesta pesquisa de mestrado, optou-se pelo emprego de um sistema hidráulico como objeto de estudo a fim de realizar a análise de confiabilidade do mesmo a partir de modelagem e verificação formal. Por mais que diversos modelos para a análise de confiabilidade de sistemas complexos tenham sido propostos na literatura, a maioria não são adequados para representar sistemas em que o comportamento é expresso em variáveis contínuas, como é o caso dos sistemas híbridos. De modo geral, para a análise de sistemas, a simulação e os testes experimentais são comumente utilizados, e geram apenas resultados aproximados a partir de uma grande quantidade de amostras. Para eliminar as limitações destas técnicas, a verificação formal é uma alternativa eficaz, visto que é caracterizada por realizar uma varredura em todos os estados possíveis do sistema de forma automática, verificando o comportamento como um todo do mesmo. Neste trabalho, foi utilizada a ferramenta computacional UPPAAL STRATEGO para a modelagem por autômatos estocásticos híbridos e verificação dos modelos, tanto verificação formal clássica como estatística. Um modelo padrão (benchmark) foi utilizado como objeto de estudo. Inicialmente o sistema foi modelado e seu comportamento (físico e controlado) verificado através da simulação e verificação formal (especificação de propriedades e verificação de modelos). Os parâmetros de confiabilidade obtidos na análise estatística de falha do sistema foram comparados com outros existentes na literatura, apresentado uma dispersão inferior a 2,5%, logo pôde se verificar que a metodologia empregada e os modelos construídos foram adequados para análise de confiabilidade deste sistema hibrido. Em uma segunda etapa do trabalho, foi modificada a distribuição de probabilidade de falha dos componentes, a fim de tornar o sistema mais fidedigno com sistemas hidráulicos reais, e estimar o tempo médio entre manutenções (MTBM – Mean Time Between Maintenance) ideal deste sistema. Portanto, conclui-se que a metodologia empregada foi adequada para realizar a análise de confiabilidade do sistema hidráulico, sendo efetivo levantar os parâmetros de confiabilidade através da verificação de modelos.
17

High-Level-Entwurf von Mikrosystemen

Markert, Erik 16 February 2010 (has links)
Die Dissertationsschrift stellt eine Toolkette zum abstrakten Entwurf von Mikrosystemen vor. Mikrosysteme können aus Elementen verschiedener physikalischer Domänen bestehen und zusätzlich digitale Hardware sowie Software enthalten. Die Erfassung und Formalisierung dieser heterogenen Systeme stellt den ersten Schritt im Entwurfsprozess dar, die damit verbundene neue Methodik des Designs von Mikrosystemen bildet den Kern der vorliegenden Arbeit. Zur Erfassung der analogen Spezifikationsteile enthält die Arbeit die Schilderung und Implementierung neuer Datenstrukturen, die ausgehend von einer ausführlichen Anforderungsanalyse geschaffen wurden. Das abstrakte Systemverhalten wird mit Hilfe hybrider Automaten modelliert, die sowohl mit speziellen hybriden Werkzeugen als auch mit SystemC-AMS simulierbar sind. Darüber hinaus beschäftigt sich die Arbeit mit der Erfassung von Signalverläufen und Schaltplaninformationen. Die formalisierten Anforderungen ermöglichen erste Prüfungen der Spezifikation auf Konsistenz. Zur Unterstützung niedriger Abstraktionsebenen wie der Differentialgleichungsebene steht ein Wandler von SystemC-AMS nach VHDL-AMS bereit. In die Systembeschreibung mit SystemC-AMS ist die Definition und Verknüpfung von Kostenparametern integrierbar. Das daraus entstehende globale Gütemaß hilft dem Entwerferteam, die optimale Systemrealisierung zu finden. / The PhD thesis proposes a toolflow for the design of microsystems on higher abstraction levels. Microsystems may consist of components using effects in different physical domains plus additional digital hardware and software. The collection and formalization of these heterogeneous systems is a first step in the design process, the associated design method ist the key point of this work. The system behavior is modeled using hybrid automata, which are checkable using hybrid modelcheckers and simulable using SystemC-AMS. Furthermore the work deals with signal forms and circuit parameters. To support modeling on lower abstraction levels like differential algebraic equations a syntax conversion from SystemC-AMS to VHDL-AMS was included. The integration of cost factors into SystemC-AMS allows design space exploration during system simulation.
18

Algorithmic analysis of complex semantics for timed and hybrid automata

Doyen, Laurent 13 June 2006 (has links)
In the field of formal verification of real-time systems, major developments have been recorded in the last fifteen years. It is about logics, automata, process algebra, programming languages, etc. From the beginning, a formalism has played an important role: timed automata and their natural extension,hybrid automata. Those models allow the definition of real-time constraints using real-valued clocks, or more generally analog variables whose evolution is governed by differential equations. They generalize finite automata in that their semantics defines timed words where each symbol is associated with an occurrence timestamp.<p><p>The decidability and algorithmic analysis of timed and hybrid automata have been intensively studied in the literature. The central result for timed automata is that they are positively decidable. This is not the case for hybrid automata, but semi-algorithmic methods are known when the dynamics is relatively simple, namely a linear relation between the derivatives of the variables.<p>With the increasing complexity of nowadays systems, those models are however limited in their classical semantics, for modelling realistic implementations or dynamical systems.<p><p>In this thesis, we study the algorithmics of complex semantics for timed and hybrid automata.<p>On the one hand, we propose implementable semantics for timed automata and we study their computational properties: by contrast with other works, we identify a semantics that is implementable and that has decidable properties. <p>On the other hand, we give new algorithmic approaches to the analysis of hybrid automata whose dynamics is given by an affine function of its variables.<p> / Doctorat en sciences, Spécialisation Informatique / info:eu-repo/semantics/nonPublished
19

Formal Verification Of Analog And Mixed Signal Designs Using Simulation Traces

Lata, Kusum 01 1900 (has links) (PDF)
The conventional approach to validate the analog and mixed signal designs utilizes extensive SPICE-level simulations. The main challenge in this approach is to know when all important corner cases have been simulated. An alternate approach is to use the formal verification techniques. Formal verification techniques have gained wide spread popularity in the digital design domain; but in case of analog and mixed signal designs, a large number of test scenarios need to be designed to generate sufficient simulation traces to test out all the specified system behaviours. Analog and mixed signal designs can be formally modeled as hybrid systems and therefore techniques used for formal analysis and verification of hybrid systems can be applied to the analog and mixed signal designs. Generally, formal verification tools for hybrid systems work at the abstract level where we model the systems in terms of differential equations or algebraic equations. However the analog and mixed signal system designers are very comfortable in designing the circuits at the transistor level. To bridge the gap between abstraction level verification and the designs validation which has been implemented at the transistor level, the very important issue we need to address is: Can we formally verify the circuits at the transistor level itself? For this we have proposed a framework for doing the formal verification of analog and mixed signal designs using SPICE simulation traces in one of the hybrid systems formal verification tools (i.e. Checkmate from CMU). An extension to a formal verification approach of hybrid systems is proposed to verify analog and mixed signal (AMS) designs. AMS designs can be formally modeled as hybrid systems and therefore lend themselves to the formal analysis and verification techniques applied to hybrid systems. The proposed approach employs simulation traces obtained from an actual design implementation of AMS circuit blocks (for example, in the form of SPICE netlists) to carry out formal analysis and verification. This enables the same platform used for formally validating an abstract model of an AMS design to be also used for validating its different refinements and design implementation, thereby providing a simple route to formal verification at different levels of implementation. Our approach has been illustrated through the case studies using simulation traces form the different frameworks i.e. Simulink/Stateflow framework and the SPICE simulation traces. We demonstrate the feasibility of our approach around the Checkmate and the case studies for hybrid systems and the analog and mixed signal designs.
20

Safe Controller Design for Intelligent Transportation System Applications using Reachability Analysis

Park, Jaeyong 17 October 2013 (has links)
No description available.

Page generated in 0.4356 seconds