• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Αλγόριθμοι συνδυαστικής βελτιστοποίησης με έμφαση σε μεταευρετικές τεχνικές

Γκόγκος, Χρήστος 11 January 2010 (has links)
- / The main topic of this thesis is the combination of metaheuristics and other methods for solving combinatorial optimization problems (COPs). In particular, focus is given in a special category of COPs known as timetabling problems. Timetabling problems belong in general to the class of NP-hard problems meaning that exact methods are usually unable to solve problem instances with sizes of practical importance. In the first three chapters optimization problems are analyzed and four major disciplines regarding optimization approaches are examined: Mathematical Programming, Artificial Intelligence, Computational Intelligence and Metaheuristics. Borders are not always clear between them while a recent trend is to hybridize approaches originating from the same or different disciplines. Even with the progress in optimization that occurred during the last decades programming successful optimization application still is an intricate mission. Nevertheless, software developing techniques, open source software and exploitation of the processing power of modern hardware can assist in constructing applications that are expected to be of much benefit for their users. Key ideas of achieving this are described in Chapter 4. The first application, presented in Chapter 5, is a pump scheduling system for a water distribution network. The objective is to achieve a way of operation for the pumps of each reservoir that results in diminished electricity cost. A model of the problem was constructed and the metaheuristic technique of genetic algorithms with the addition of several heuristics solved the problem. The second application, presented in Chapter 6, is the examination timetabling problem for Universities. Educational timetabling problems in general attract much interest from the scientific community. Our approach targeted various models of the examination timetabling problem and constituted by two major phases: construction and improvement. A number of metaheuristics were hybridized (Simulated Annealing, GRASP, VNS, Taboo Search and others) while certain sub-problems were solved using exact methods (Integer Programming). The results that we achieved in known datasets for evaluating the performance of such methods were most promising. In particular, for the publicly available datasets of the second International Timetabling Competition our approach achieved the best published score for 6 out of 8 datasets. The third application, presented in Chapter 7, is the construction of timetables for Greek high schools. A model of the problem that had publicly available problem instances and published results was used. Better results were able to be obtained by reformulating the problem and subsequently using a branch and cut approach implemented using entirely open source software. In summary, successful results of our approaches suggest that metaheuristics and hybridized metaheuristics with other metaheuristic or exact methods appears to be a promising research direction for handling complex combinatorial optimization problems.
2

Abordagem metaheurística híbrida para a otimização de sequenciamento de produção em Flow Shop Permutacional com tempos de setup dependentes da sequência

Simões, Wagner Lourenzi 06 December 2016 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2017-02-08T15:41:51Z No. of bitstreams: 1 Wagner Lourenzi Simões_.pdf: 1389162 bytes, checksum: 302aec842d2f4e8b0a7c78ecbae24357 (MD5) / Made available in DSpace on 2017-02-08T15:41:51Z (GMT). No. of bitstreams: 1 Wagner Lourenzi Simões_.pdf: 1389162 bytes, checksum: 302aec842d2f4e8b0a7c78ecbae24357 (MD5) Previous issue date: 2016-12-06 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste estudo, foi desenvolvida uma ferramenta computacional baseada em metaheurísticas para a otimização do sequenciamento de produção em Flow Shop permutacionais aplicados à montagem de placas eletrônicas que operam em ambientes High-Mix, Low-Volume. O ambiente High-Mix, Low-Volume exige a realização de um grande número de setups para atender à flexibilidade exigida. Esse elevado número de sucessivos setups para a produção de pequenos lotes impacta negativamente nos custos operacionais da empresa. Uma das formas de se obter vantagem ao lidar com um grande mix de produção é explorando características similares entre os produtos, de forma que, através de um sequenciamento adequado, seja possível reduzir o tempo total de parada para setup e, por consequência, reduzir também o tempo total de processamento (makespan). A literatura apresenta muitos exemplos de sucesso na aplicação de técnicas de otimização para o sequenciamento da produção como forma de ganho de vantagem competitiva. Porém, a complexidade e o grande esforço computacional exigidos na solução deste problema, por muitas vezes, inviabilizam sua aplicação na rotina das indústrias. Neste contexto, as metaheurísticas emergem como uma opção para a viabilização de ferramentas para otimização do sequenciamento de produção. Dentre as abordagens metaheurísticas existentes, destacam-se as abordagens híbridas que combinam estratégias de busca local com algoritmos evolutivos como opções para a geração, de forma rápida, de boas soluções para o problema de sequenciamento, ainda que estes métodos não possam garantir a otimalidade da solução. A ferramenta desenvolvida, baseada no uso combinado das metaheurísticas Busca Tabu e Algoritmo Genético, busca a melhor sequência possível dentro do tempo computacional disponível de forma a reduzir os tempos gastos com operações de tempo de setup, e consequentemente o makespan. O Algoritmo Hibrido foi avaliado utilizando instâncias da literatura e instâncias advindas de um caso real. Os resultados dos testes indicam a superioridade da abordagem híbrida sobre as abordagens canônicas do algoritmo Genético e Busca Tabu. Os resultados obtidos na avaliação de instâncias reais indicam a aplicabilidade da ferramenta em ambientes reais, obtendo bons resultados na otimização dos tempos de setup, mesmo para o sequenciamento de grandes quantidades de produtos diferentes. / This work proposes the development of a metaheuristics based computation tool, to solve the permutation flow shop scheduling problem (PFSSP) in the electronic manufacturing operating in High-mix, Low-volume enviroment. To operate in HMLV enviroment is demanded a large number of setup changes to comply the flexibility required. This elevated number of successive setup changes to produce little batches have negative impacts on the operation costs. One way for to obtain advantages handling a large product mix is to explore the similar features between this products. Through a proper scheduling we can reduce the total downtime to setup changes, and consequently reduces the process time (makespan). The literature brings many success examples in the production scheduling optimization as a way to obtain competitive advantages. But, the complexity and the computational effort demanded to solve this problems, sometimes, turns the practical application unfeasible in the factories routine. In this contexto emerges the metaheuristics as an option to viability this type of application. Among the mataheuristics approaches, outstands the hybrid approaches that combine local search strategies with evolutionary algorithms as a way to obtain good and fast solutions for the scheduling problems, although the optimality is not been guaranted. The tool proposed combine the metaheuristics Genetic Algorithm and Tabu Search to optimize the flow shop scheduling in the shortest possible time to allow the practical application in industry. The tool was evaluate based on quality metrics like makespan and mean setup time. The Hybrid Algorithm has been evaluated using instances of the literature and instances arising from a real case. The results of the tests indicate a superiority of the hybrid approach over canonical approaches of the Genetic algorithm and Tabu Search. The results obtained in the evaluation of real instances indicate an applicability of the tool in real environments, obtaining good results in the optimization of textit setup times, also for the sequencing of large products. The Hybrid Algorithm has been evaluated using instances of the literature and instances arising from a real case. The tests results indicate a superiority of the hybrid approach over canonical approaches of the Genetic algorithm and Tabu Search. The results obtained in the evaluation of real instances indicate an applicability of the tool in real environments, obtaining good results in the setup time optimization, also for the sequencing of large products.
3

HIBRIDIZAÇÃO DE MÉTODOS EXATOS E HEURÍSTICOS PARA RESOLUÇÃO DE PROBLEMAS DE OTIMIZAÇÃO COMBINA / HYBRIDIZATION OF EXACT AND HEURISTIC METHODS TO SOLVE COMBINATORIAL OPTIMIZATION PROBLEM

Stefanello, Fernando 04 March 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The evolution of computer hardware as well as new applications of mathematical programming techniques, efficiently implemented in many commercial solvers, has given rise to new algorithms called hybrid metaheuristic, which have been applied to solve combinatorial problems. This work presents several approaches which try to deal with the hybridization of local search based metaheuristics with exact algorithms to solve two problems of combinatorial optimization. More specifically, the first problem, capacitated p-median problem, the proposed approach considers heuristic elimination of variable of the original mathematical model, that produce solutions of very good quality in a short amount of time, and a combination with an iterative procedure in which only a certain subset of points is considered. As regards the second problem, unrelated parallel machine scheduling with sequence and machine dependent setup time problem of minimizing makespan, is proposed a mathematical model to search the neighborhood of a solution and identify movement sequences to minimize the objective function. In both cases, mathematical models are solved using a commercial solver. Extensive computational experiments are carried out to demonstrate the good performance of the proposed approaches. / A recente evolução dos computadores como também dos métodos exatos oriundos da programação matemática, muitos destes eficientemente implementados em otimizadores comerciais, propiciou o surgimento de novos algoritmos, denominados metaheurísticas híbridas, que têm sido aplicados para resolução de problemas combinatoriais. Este trabalho apresenta abordagens que hibridizam metaheurísticas baseadas em busca local com algoritmos exatos de programação matemática para resolver dois problemas de otimização combinatória. Mais especificamente, para o primeiro problema, o problema das p-medianas capacitado, a proposta considera a eliminação heurística de variáveis do modelo matemático, que permite a obtenção de soluções de boa qualidade em um curto tempo computacional, e a combinação com um procedimento iterativo no qual apenas um determinado subconjunto de pontos é considerado. No que se refere ao segundo problema, programação de tarefas em máquinas paralelas não relacionadas com tempo de preparação dependente da sequência e da máquina com objetivo de minimizar o tempo de processamento total da máquina com maior carga entre todas (makespan), propõe-se um modelo matemático para varrer a vizinhança de uma solução e identificar sequências de movimentos de tarefas que podem ser aplicadas na respectiva solução de modo a minimizar a função objetivo. Nos dois casos os modelos matemáticos são resolvidos utilizando um otimizador comercial. Extensivos testes computacionais são realizados para demonstrar o bom desempenho das abordagens propostas.
4

Hybrid Evolutionary Metaheuristics for Multiobjective Decision Support / Métaheuristiques hybrides évolutionnaires pour l'aide à la décision multi-objectifs

Kafafy, Ahmed 24 October 2013 (has links)
La prise de décision est une partie intégrante de notre vie quotidienne où le décideur est confronté à des problèmes composés de plusieurs objectifs habituellement contradictoires. Dans ce travail, nous traitons des problèmes d'optimisation multiobjectif dans des espaces de recherche continus ou discrets. Nous avons développé plusieurs nouveaux algorithmes basés sur les métaheuristiques hybrides évolutionnaires, en particulier sur l'algorithme MOEA/D. Nous avons proposé l'algorithme HEMH qui utilise l'algorithme DM-GRASP pour construire une population initiale de solutions de bonne qualité dispersées le long de l'ensemble des solutions Pareto optimales. Les résultats expérimentaux montrent la supériorité de toutes les variantes hybrides proposées sur les algorithmes originaux MOEA/D et SPEA2. Malgré ces bons résultats, notre approche possède quelques limitations, levées dans une version améliorée de HEMH : HEMH2 et deux autres variantes HEMHde et HEMHpr. Le Adaptive Binary DE inclus dans les HEMH2 et HEMHde a de meilleures capacités d'exploration qui pallient aux capacités de recherche locale contenues dans la HEMH, HEMH2 et HEMHde. Motivés par ces résultats, nous avons proposé un nouvel algorithme baptisé HESSA pour explorer un espace continu de recherche où le processus de recherche est réalisé par différentes stratégies de recherche. Les résultats expérimentaux montrent la supériorité de HESSA à la fois sur MOEA/D et dMOPSO. Tous les algorithmes proposés ont été vérifiés, testé et comparés à certaines méthodes MOEAs. Les résultats expérimentaux montrent que toutes les propositions sont très compétitives et peuvent être considérés comme une alternative fiable / Many real-world decision making problems consist of several conflicting objectives, the solutions of which is called the Pareto-optimal set. Hybrid metaheuristics proved their efficiency in solving these problems. They tend to enhance search capabilities by incorporating different metaheuristics. Thus, we are concerned with developing new hybrid schemes by incorporating different strategies with exploiting the pros and avoiding the drawback of the original ones. First, HEMH is proposed in which the search process includes two phases DMGRASP obtains an initial set of efficient solutions in the 1st phase. Then, greedy randomized path-relinking with local search or reproduction operators explore the non-visited regions. The efficient solutions explored over the search are collected. Second, a comparative study is developed to study the hybridization of different metaheuristics with MOEA/D. The 1st proposal combines adaptive discrete differential Evolution with MOEA/D. The 2nd combines greedy path-relinking with MOEA/D. The 3rd and the 4th proposals combine both of them in MOEA/D. Third, an improved version of HEMH is presented. HEMH2 uses inverse greedy to build its initial population. Then, differential evolution and path-relink improves these solutions by investigating the non-visited regions in the search space. Also, Pareto adaptive epsilon concept controls the archiving process. Motivated by the obtained results, HESSA is proposed to solve continuous problems. It adopts a pool of search strategies, each of which has a specified success ratio. A new offspring is generated using a randomly selected one. Then, the success ratios are adapted according to the success of the generated offspring. The efficient solutions are collected to act as global guides. The proposed algorithms are verified against the state of the art MOEAs using a set of instances from literature. Results indicate that all proposals are competitive and represent viable alternatives

Page generated in 0.0656 seconds