• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèses de nanoparticules hybrides : de nouveaux agents pour le diagnostic et la thérapie combinés / Synthesis of hybrids nanoparticles : new agents for diagnosis and therapy

Mutelet, Brice 19 September 2011 (has links)
La miniaturisation des systèmes a montré qu’à l’échelle nanométrique, les matériaux possèdent des propriétés différentes de leur état massif. Aujourd'hui, la synthèse d’objets de taille nanométrique est en parfaite adéquation avec les systèmes biologiques pour des applications médicales. La possibilité pour les chimistes de combiner dans un même « nano-objet » différent types de matériaux aux propriétés complémentaires a ouvert la voie au développement de nanoparticules multifonctionnelles pour des applications biologiques. C’est dans ce domaine, en utilisant les propriétés remarquables des terres rares que le LPCML de l’Université de Lyon en collaboration avec le laboratoire MATEIS de l’INSA de Lyon a pu mettre au point des nanoparticules hybrides multifonctionnelles ayant une structure cœur/coquille en combinant un cœur inorganique d’oxyde de lanthanide protégé par une coquille organique composée de polysiloxanes. L’utilisation d’un cœur d’oxyde de terre rare permet de disposer à la fois d’outils de détection (optique avec Eu et Tb, IRM avec Gd, Dy et Ho ou en scintigraphie avec Ho) et d’agent thérapeutique avec Gd et Ho. Après avoir longuement étudié les propriétés comme agent de contraste et de thérapie par capture neutronique du gadolinium, nous nous sommes intéressés aux propriétés atomiques de l’holmium qui après irradiation neutronique émet des rayonnements  et - potentiellement intéressants pour un traitement en curiethérapie. Le travail de thèse présenté ici rend compte de l’étude réalisée d’une part sur les propriétés optiques et magnétiques de ces nanoparticules hybrides à base d’oxyde de terre rare et d’autre part sur les possibilités d’applications médicales avec l’utilisation d’holmium. / The everlasting search for the miniaturization of the processes has shown that at the nanometer scale materials exhibit different properties than from the bulk. Today, the synthesis of nano-sized objects is in perfect harmony with biological systems for medical applications. The opportunity for chemists to combine into a single nano-oject different kind of materials with complementary properties has opened the way for the development of multifunctional nanoparticles for biological applications. In this area, using the remarkable properties of rare earths, LPCML laboratory from Lyon University in collaboration with MATEIS laboratory from INSA-Lyon was able to develop multifunctional hybrid nanoparticles with a core/shell structure by combining an inorganic rare earth oxide core coated by a polysiloxane shell. The using of a lanthanide in the core enables the combination of detection tools (optical with Eu and Tb, MRI with Gd, Dy and Ho or scintigraphy with Ho) and therapeutic agents with Gd and Ho. After having studied the properties of gadolinium as a contrast and neutron capture therapeutic agent, we were interested in atomic properties of holmium after neutron irradiation which emits  and - radiations, potentially interesting for scintigraphic imaging and brachytherapy. The thesis presented here reports studies on the one hand on optical and magnetic properties of these hybrid nanoparticles and on the other hand the possibilities of medical applications by using holmium-based particles.
2

Development of a multimodal nanoprobe for the comprehension of post-stroke inflammation / Développement d'une nanosonde multimodale pour la compréhension de l'inflammation après un accident vasculaire cérébrale

Karpati, Szilvia 18 October 2019 (has links)
L’accident vasculaire cérébrale (AVC) ischémique est une des premières causes de mortalité dans le monde, par conséquent il constitue un véritable enjeu de santé publique. Cette pathologie résulte de l’obstruction d’une artère cérébrale par un caillot et déclenche une inflammation, pouvant majorer les lésions tissulaires du cerveau. À ce jour les traitements anti-inflammatoires appliqués en clinique se sont révélés inefficaces. Il est donc indispensable de développer de nouvelles approches diagnostiques pour une meilleure compréhension des mécanismes biologiques impliqués dans cette pathologie. Dans ce contexte, nous avons proposé la conception d’une nanoplateforme hybride multimodale comme agent de contraste adapté à trois techniques d’imagerie médicale. Ces nanoparticules au cœur inorganique, composé de GdF3 augmentent sensiblement le contraste en IRM et leur opacité procure un rehaussement de contraste pour le Scanner Spectral à Comptage Photonique (SPCCT), une technique de développement récent. La troisième modalité, la microscopie biphotonique procure une haute résolution et une très grande sensibilité, tout en permettant d’obtenir des images en temps réel. Grâce à un chromophore adapté, greffé à la surface de la particule, cette modalité devient également accessible. Ces particules inorganiques sont synthétisées par une méthode solvothermale originale, développée par notre équipe. La surface des nanoparticules est ensuite modifiée par différents ligands polyéthylène glycol (PEG) fonctionnalisés, qui rendent les particules de GdF3 stables en milieu physiologique (comme le sang), biocompatibles et furtives. Enfin, un chromophore spécialement développé au sein de notre laboratoire, pour des applications d’absorption biphotonique, a été greffé à la surface de la particule. Le couplage du chromophore a été effectué via une réaction click azoture-alcyne, activée thermiquement (sans catalyse par Cu(I)). La toxicité des particules a été évaluée par deux techniques différentes, appliquées sur des cellules d’origine humaine. À l’issue de ces tests aucun effet cytotoxique n’a été observé. Après avoir démontré les propriétés multimodales de ces nanoobjets, des expériences précliniques in vivo ont été menées. Nous avons montré, que lors de l’observation du cerveau de souris la nanosonde augmente efficacement le contraste en SPCCT, IRM et produit un signal intense en microscopie 2-photons intravitale. Les particules se sont révélées particulièrement stables dans le sang : grâce à leur furtivité elles restent dans la circulation longtemps, ce qui favorise leur passage à travers la barrière hémato-enchéphalique lésée. Elles sont également phagocytées par les cellules immunitaires activées. La dynamique spatio-temporelle de ces cellules marquées par les nanoparticules a pu être imagée / Ischemic stroke, as one of the most common causes of death, represents an important health issue. The pathology consists of the occlusion of an artery in the brain leading to an acute inflammatory process. Post-stroke inflammation usually results in irreversible secondary brain tissue damage. To date, the clinical application of anti-inflammatory treatments has been either negative or inconclusive. For a better understanding of this complex physiological process and development of efficient treatment, there is an urgent need to develop performant in-vivo diagnostic tools. In that context, we proposed to design a multimodal hybrid nanoprobe for enhancing the contrast in three different clinical and pre-clinical imaging modalities. The ability of this probe to enhance contrast in MRI (Magnetic Resonance Imaging) and a recently developed spectral photon counting scanner computed tomography (SPCCT) is intrinsic to the inorganic GdF3 core. The inorganic nanoparticle size and morphology was optimized for the biological application. The third modality, two-photon imaging, provides high spatial resolution, high sensitivity, and allows real-time imaging. To make GdF3 nanoparticles visible by two-photon microscopy, a specially designed organic moiety is added to the nanoplatform. The inorganic nanoparticles are synthesized by the original solvothermal method developed in our group. Surface modifications with different PEG derivatives confer to the GdF3 nanoparticles high stability in physiological media (such as blood), biocompatibility, and stealth. The two-photon active chromophore synthesized in our laboratory is grafted to the particle surface via a thermally activated (catalyst-free) alkyne-azide click reaction. Toxicity of the nanoobjects has been assessed by using two different tests on four human-derived cells, and no cytotoxic effect of the particles was found. After the demonstration of the multimodality of the particles, pre-clinical in vivo experiments were performed. We evidenced that the particles successfully enhance SPCCT, MRI contrast in the brain of the small animal via a T2-effect and provide a high-intensity two-photon signal for in-vivo microscopy. Besides, the nanoparticles revealed to be stable and long-circulating in the blood, which favored their cross through the altered blood-brain barrier. Their phagocytose by activated immune cells offered the possibility to follow cell-trafficking

Page generated in 0.0782 seconds