Spelling suggestions: "subject:"hybridelectric ehicles"" "subject:"hybridelectric invehicles""
121 |
On design and analysis of synchronous permanent magnet machines for field-weakening operation in hybrid electric vehiclesMagnussen, Freddy January 2004 (has links)
<p>A regular vehicle of today is equipped with an internal combustion engine that runs on either gasoline or diesel, which are fossil fuels from oil reserves that are millions of years old. In all types of combustion processes carbon dioxide and several other emissions are produced. There are none known technologies of today that can reduce the emissions of carbon dioxide from combustion, but the amount that is produced is mainly dependent on the fuel that is used. Combustion of fossil fuels increases the contamination of carbon dioxide in the atmosphere and diminishes the oil resources. The results are global warming and empty oil reserves within a few decades with the current production tempo, in addition to many other pollution effects that are harmful to the environment. A transition towards a society based on sustainable transportation is therefore urgent. The hydrogen fuel cell powered car with an electric propulsion system has the potential to be the car of the future that possesses the required characteristics of no harmful tailpipe emissions. There are some obstacles in the way for an early commercialisation, including the expensive catalysts used today and the lack of an infrastructure based on hydrogen, though. The hybrid electric vehicle, with both a conventional as well as an electric drivetrain, is a natural candidate for making the transition from the conventional car towards the car of the future. </p><p>This thesis is focused on the design and analysis of permanent magnet machines for a novel hybrid electric vehicle drive system called the Four Quadrant Transducer. A number of electrical machine aspects are identified, including cores of soft magnetic composites, fractional pitch concentrated windings, core segmentation, novel machine topologies and cost effective production methods. The main objective is to analyse and judge the many unconventional machine aspects of which some may have the potential to improve the performance and reduce the cost of permanent magnet machines. Another objective is to study the effects of the use of fossil fuels and describe them with a new perspective and thereby make one small contribution to the debate about energy issues. Much focus has been spent on the theory of concentrated windings for permanent magnet machines. The potential parasitic effects and methods to improve the torque performance have been described. Other topics that have been given a high priority are material and power loss studies. An important contribution to the understanding of iron losses during field-weakening operation has been presented. A comprehensive use of finite element modeling has been done in the analysis combined with measurements on several laboratory prototypes. </p><p>The Four Quadrant Transducer drivetrain and its two electrical machines intended for a midsized passenger car has been studied. The gearbox can be of a simple single stage type, which reduces the mechanical complexity and makes the traction performance of the vehicle smooth, without gear changes and drops in power. Simulations on a complete hybrid system show that fuel savings of more than 40% compared to a conventional vehicle can be achieved at citytraffic driving. The savings are modest at highway driving, since the engine is required to operate at high power during such conditions, and the support from the electrical system is negligible. The laboratory prototypes have shown that it is possible to manufacture high performance electrical machines with high material utilization and potential for automated production. The described concepts offer cost effective solutions for future drive systems in automotive and industrial applications. A number of weaknesses with the presented constructions have also been characterized, which should serve as guidelines for creating more optimized machines. </p>
|
122 |
Energiemanagement für eine parallele HybridfahrzeugarchitekturHelbing, Maximilian 06 February 2015 (has links) (PDF)
Durch die Integration mindestens eines weiteren Energiewandlers in den Antriebsstrang gewinnen parallele Hybridfahrzeuge einen zusätzlichen Freiheitsgrad gegenüber konventionellen Fahrzeugen. Neben der Auslegung und Effizienz der einzelnen Antriebskomponenten, ist vor allem die Nutzung dieses zusätzlichen Freiheitsgrades entscheidend dafür verantwortlich, inwiefern die beim Betrieb eines Hybridfahrzeugs erwünschten Ziele, wie die Minimierung des Kraftstoffverbrauchs oder der Abgasemissionen, erreicht werden können. Zuständig dafür sind sogenannte Betriebsstrategien.
In einem ersten Schritt gibt die vorliegende Diplomarbeit einen Überblick aktueller Betriebsstrategieansätze für Fahrzeuge mit einer parallelen Hybridarchitektur und stellt ausgewählte Beiträge wertend gegenüber. Anschließend wird mit der optimierungsbasierten Equivalent Consumption Minimization Strategy (ECMS) ein vielversprechender Ansatz in ein MATLAB/Simulink-Längsdynamikmodell umgesetzt. Die für diesen Ansatz maßgebliche Bestimmung des Äquivalenzfaktors erfolgt dabei ohne Verwendung von Prädiktionsdaten. Eine Gegenüberstellung der erzielten Kraftstoffverbrauchswerte zu denen einer regelbasierten Betriebsstrategie, zeigt die Vorteile des implementierten ECMS-Ansatzes. Um den unterschiedlichen Ladezuständen am Fahrtende gerecht zu werden, wird eine ladungsabhängige Kraftstoffkorrektur vorgestellt. / By integrating at least one additional energy converter into the drive train, parallel hybrid vehicles gain an additional degree of freedom compared to conventional vehicles. In addition to the design and efficiency of the individual drive train components, especially the use of this additional degree of freedom is the key responsible to achieve the desired goals in the operation of a hybrid vehicle, such as minimizing fuel consumption and exhaust emissions. Responsible for this are so-called supervisory strategies.
In a first step, the present thesis provides an overview of current supervisory control strategies for vehicles with a parallel hybrid architecture and compares selected approaches. In a second step, a promising Equivalent Consumption Minimization Strategy (ECMS) is chosen and implemented in a MATLAB/Simulink-longitudinal dynamics model. This approach relates on the determination of the equivalence factor which is carried out without the use of prediction data. A comparison of the fuel consumption, obtained for a rule-based supervisory strategy, shows the advantages of the implemented ECMS approach. To consider the different states of charge at the end of the trip, a charge-dependent fuel correction will be presented.
|
123 |
U.S. Governmental incentives and policies for investment in electric vehicles and infrastructureZeeshan, Jafer January 2014 (has links)
The purpose of study is to research the development of electric vehicle technology in the United States. This study describes the United States public policies towards electric vehicle technology and system of innovation approaches. The government roles with the help of national system of innovation have been also covered in this study. The point of departure was the study of available literature and U.S energy policy acts which illustrates that the break-through in electric vehicles still not only depended on better battery technology and infrastructure for charging stations but also on social, economic and political factors. The important actors involved in the process are both at local and international level are private firms, governmental departments, research and development (R&D) institutes, nongovernment organizations (NGO’s) and environmental organizations etc. The arguments which are put forward in the background of development of such technologies are to reduce dependence on foreign oil and to reduce emissions of harmful gasses.
|
124 |
Optimised space vector modulation for variable speed drivesKhan, Hamid 06 November 2012 (has links) (PDF)
The dissertation documents research work carried out on Pulse Width Modulation (PWM) strategies for hard switched Voltage Source Inverters (VSI) for variable speed electric drives. This research is aimed at Hybrid Electric Vehicles (HEV). PWM is at the heart of all variable speed electric drives; they have a huge influence on the overall performance of the system and may also help eventually give us an extra degree of freedom in the possibility to rethink the inverter design including the re-dimensioning of the inverter components.HEVs tend to cost more than conventional internal combustion engine (ICE) vehicles as they have to incorporate two traction systems, which is the major discouraging factor for consumers and in turn for manufacturers. The two traction system increases the maintenance cost of the car as well. In addition the electric drives not only cost extra money but space too, which is already scarce with an ICE under the hood. An all-electric car is not yet a viable idea as the batteries have very low energy density compared with petrol or diesel and take considerable time to charge. One solution could be to use bigger battery packs but these add substantially to the price and weight of the vehicle and are not economically viable. To avoid raising the cost of such vehicles to unreasonably high amounts, autonomy has to be compromised. However hybrid vehicles are an important step forward in the transition toward all-electric cars while research on better batteries evolves. The objective of this research is to make electric drives suitable for HEVs i.e. lighter, more compact and more efficient -- requiring less maintenance and eventually at lower cost so that the advantages, such as low emissions and better fuel efficiency, would out-weigh a little extra cost for these cars. The electrical energy source in a vehicle is a battery, a DC Voltage source, and the traction motor is generally an AC motor owing to the various advantages it offers over a DC motor. Hence the need for a VSI, which is used to transform the DC voltage into AC voltage of desired amplitude and frequency. Pulse width modulation techniques are used to control VSI to ensure that the required/calculated voltage is fed to the machine, to produce the desired torque/speed. PWM techniques are essentially open loop systems where no feedback is used and the instantaneous values differ from the required voltage, however the same average values are obtained. Pulse width modulated techniques produce a low frequency signal (desired average value of the switched voltage) also called the fundamental component, along with unwanted high frequency harmonics linked to the carrier signal frequency or the PWM period. In modern cars we see more and more mechanical loads driven by electricity through digital processors. It is very important to eliminate the risk of electromagnetic interference between these systems to avoid failure or malfunction. Hence these unwanted harmonics have to be filtered so that they do not affect the electronic control unit or other susceptible components placed in the vicinity. Randomised modulation techniques (RPWM) are used to dither these harmonics at the switching frequency and its multiple. In this thesis a random modulator based on space vector modulation is presented which has additional advantages of SVM. Another EMI problem linked to PWM techniques is that they produce common mode voltages in the load. For electric machines, common mode voltage produces shaft voltage which in turn provokes dielectric stress on the motor bearings, its lubricant and hence the possibility of generating bearing currents in the machine that can be fatal for the machine. To reduce the common mode voltage a space vector modulation strategy is developed based on intelligent placement of zero vectors. (...)
|
125 |
Evaluating methods for multi-level system design of a series hybrid vehicleTaylor, Brian Jonathan Hart 05 July 2012 (has links)
In design and optimization of a complex system, there exist various methods for defining the relationship between the system as a whole, the subsystems and the individual components. Traditional methods provide requirements at the system level which lead to a set of design targets for each subsystem. Meeting these targets is sometimes a simple task or can be very difficult and expensive, but this is not captured in the design process and therefore unknown at the system level. This work compares Requirements Allocation (RA) with Distributed Value Driven Design (DVDD).
A computational experiment is proposed as a means of evaluating RA and DVDD. A common preliminary design is determined by optimizing the utility of the system, and then a Subsystem of Interest (SOI) is chosen as the focal point of subsystem design. First the behavior of a designer using Requirements Allocation is modeled with an optimization problem where the distance to the design targets is minimized. Next, two formulations of DVDD objective functions are used to approximate the system-level value function. The first is a linear approximation and the second is a nonlinear approximation with higher fidelity around the preliminary design point. This computational experiment is applied to a series hybrid vehicle where the SOI is the electric motor.
In this case study, RA proves to be more effective than DVDD on average. It is still possible that the use of objectives is superior to design targets. This work shows that, for this case study, a linear approximation as well as a slightly higher fidelity approximation are not well suited to find the design alternative with the highest expected utility.
|
126 |
Look-Ahead Information Based Optimization Strategy for Hybrid Electric VehiclesJanuary 2016 (has links)
abstract: The environmental impact of the fossil fuels has increased tremendously in the last decade. This impact is one of the most contributing factors of global warming. This research aims to reduce the amount of fuel consumed by vehicles through optimizing the control scheme for the future route information. Taking advantage of more degrees of freedom available within PHEV, HEV, and FCHEV “energy management” allows more margin to maximize efficiency in the propulsion systems. The application focuses on reducing the energy consumption in vehicles by acquiring information about the road grade. Road elevations are obtained by use of Geographic Information System (GIS) maps to optimize the controller. The optimization is then reflected on the powertrain of the vehicle.The approach uses a Model Predictive Control (MPC) algorithm that allows the energy management strategy to leverage road grade to prepare the vehicle for minimizing energy consumption during an uphill and potential energy harvesting during a downhill. The control algorithm will predict future energy/power requirements of the vehicle and optimize the performance by instructing the power split between the internal combustion engine (ICE) and the electric-drive system. Allowing for more efficient operation and higher performance of the PHEV, and HEV. Implementation of different strategies, such as MPC and Dynamic Programming (DP), is considered for optimizing energy management systems. These strategies are utilized to have a low processing time. This approach allows the optimization to be integrated with ADAS applications, using current technology for implementable real time applications.
The Thesis presents multiple control strategies designed, implemented, and tested using real-world road elevation data from three different routes. Initial simulation based results show significant energy savings. The savings range between 11.84% and 25.5% for both Rule Based (RB) and DP strategies on the real world tested routes. Future work will take advantage of vehicle connectivity and ADAS systems to utilize Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), traffic information, and sensor fusion to further optimize the PHEV and HEV toward more energy efficient operation. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016
|
127 |
Contribution à la modélisation thermique de packs batteries LiFePO4 pour véhicules décarbonés / Study for the thermal modeling of low-carbon vehicle LiFePO4 battery packsDamay, Nicolas 11 December 2015 (has links)
Cette thèse s’inscrit dans la problématique mondiale qu’est la gestion de l’énergie en se focalisant sur les batteries pour véhicules électriques ou hybrides. Celles-ci subissent des contraintes particulièrement sévères qui les font s’échauffer rapidement. Afin d’éviter le risque d’un vieillissement prématuré tout en limitant les surcoûts, il convient de dimensionner la batterie et son système de refroidissement de manière optimale. Les modèles thermiques proposés permettent ce dimensionnement optimal. Le modèle utilisé pour les pertes électriques a été amélioré pour être désormais stable lors de simulations de longs trajets. L’analyse fine du fort couplage entre les phénomènes thermiques et électrochimiques a mené à de nouvelles méthodes de caractérisations. Le « découplage » de ces phénomènes permet d’améliorer grandement les prédictions des modèles, notamment dans des plages de fonctionnement très contraignantes (basse température et très forte puissance). La précision est garantie à 1 °C, même pour des simulations de plusieurs heures. / This PhD thesis is included in the global energy-management issue. lts focus is on battery packs for electric or hybrid vehicles. The latter are bound to heat quickly because they're receiving high stresses during operation. Thus, to avoid accelerating the aging process while maintaining a minimal cost, the battery and its cooling system have to be sized optimally. The proposed thermal models can be used to reach this optimal sizing. The electrical losses model has been improved to become stable during the simulations of long driving cycles. The precise study of the strong coupling between electrochemical and thermal behaviors has led to new characterization methods. The "decoupling" of these phenomena improves significantly the models predictions, especially in very stressed operation ranges (low temperature and high power).The precision is better than 1° C, even for several-hours simulations.
|
128 |
Trajetória tecnológica do veículo elétrico : atores, políticas e esforços tecnológicos no Brasil / Technological path of electric vehicle : players, policies and technological efforts in BrazilBarassa, Edgar, 1991- 27 August 2018 (has links)
Orientador: Flávia Luciane Consoni de Mello / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Geociências / Made available in DSpace on 2018-08-27T17:31:56Z (GMT). No. of bitstreams: 1
Barassa_Edgar_M.pdf: 1763490 bytes, checksum: 150d4a1e9b699993d6ea840d34588afa (MD5)
Previous issue date: 2015 / Resumo: A indústria automobilística global está passando por um período de reestruturação, a qual deverá contemplar o uso de tecnologias alternativas às tradicionais com o propósito de aumentar a eficiência energética dos veículos e paralelamente reduzir as emissões de poluentes. Neste contexto, os veículos elétricos (VE) caracterizam-se como uma das alternativas possíveis frente a este cenário de novas demandas. Essa dissertação avança nesta temática ao investigar, descrever e analisar a trajetória histórica, tecnológica e de mercado do veículo elétrico. Para o aprofundamento ao tema, observou-se a competição tecnológica pelo sistema de propulsão dominante, que ocorreu entre: 1) o motor a vapor; 2) os conversores eletromecânicos de energia (motores elétricos); e 3) os motores a combustão interna, sendo o último caracterizado como vencedor. Ao longo dos 50 anos que seguiriam a partir do fechamento do motor a combustão interna em 1920 como paradigma tecnológico, os veículos elétricos praticamente desaparecem. O projeto do veículo elétrico só foi retomado a partir da década de 1970, com os estímulos vindos da agenda ambiental, da poluição do ar e seus impactos na saúde pública e do aumento do uso dos combustíveis fósseis. Porém, será a partir do século XXI que o segmento dos veículos elétricos irá ascender tanto do lado tecnológico quanto de mercado. Foram observadas três configurações mais promissoras a respeito da tecnologia dos veículos elétricos: a bateria, híbrido e a células a combustíveis. As três configurações apresentam barreiras e desafios, os quais estão sendo sistematicamente trabalhados pelas empresas que estão dispensando esforços para o segmento. Isto é observado com base na evolução das patentes publicadas sobre veículos elétricos e suas tecnologias. Sendo assim, é possível, ainda, constatar a evolução das vendas dos veículos elétricos nos Estados Unidos, Japão e em um pequeno número de países europeus. O êxito mercadológico fica para os modelos híbridos, com vendas sete vezes superiores aos veículos elétricos a bateria. Transpondo esta discussão para o contexto brasileiro atual, salientamos que o Brasil possui os atores (órgãos governamentais, empresas e instituições públicas de pesquisa) e condições (mercado automobilístico consolidado e know-how) necessários para a formação de um complexo automobilístico voltado aos veículos elétricos, porém as ações em curso no país são pontuais. Ainda que tais iniciativas possam favorecer a criação de competências específicas para o veículo elétrico, elas se mostram pouco efetivas para criar as condições que permitam o Brasil ocupar posição de destaque neste mercado. Ao menos que se projete um rol de políticas claras de apoio e suporte ao desenvolvimento de tecnologias locais destinadas ao veículo elétrico, poucos avanços serão conquistados neste campo tecnológico / Abstract: Automobile industry across the world is undergoing structural change. Advances in emission regulations and the effects of oil price fluctuations are forcing carmakers towards new product programs that use new technologies in order to increase the energy efficiency of vehicles, reduce emissions and decrease environment impacts. In this context, electric vehicles have been considered as one of the possible alternatives for this scenario of new demands. This dissertation advances on this topic to investigate, describe and analyze the historical and technological trajectories and market behavior of the electric vehicle. It was observed a technological competition by dominant propulsion system, that had occurred among: 1) the steam engine; 2) electromechanical energy converters (electric motors); and 3) internal combustion engines, the last being characterized as the most used. Throughout the following 50 years from the engine closure based on the internal combustion in 1920, electric vehicles practically disappeared. The electric vehicle project was only resumed after the 1970s, due to the environmental agenda, the air pollution and its impacts on public health and the increase of fossil fuels prices. However, in the 21st century, the segment of electric vehicles has ascended in both technological and market fields. Therefore, it is possible to identify the three most promising settings about electric vehicle technology: battery electric vehicle, hybrid vehicle and fuel cells vehicle. The three configurations have obstacles and challenges, which are being systematically tackled by companies that are dispensing efforts for the segment, based on the evolution of patents published concerning the electric vehicles and their technologies. Thus, it is possible to verify the evolution of the electric vehicles selling in the United States, Japan and a few European countries. The world market success is related to hybrids models, selling seven times more than the battery electric vehicle. In the current Brazilian context, the country has the government agencies, companies and public research intuitions and had the conditions (mature automobile market and know-how) for the formation of an automobile complex of electric vehicles, with off actions. Although such initiatives may favor the creation of specific competencies for electric vehicle, they show little effective to create conditions for the Brazil occupy a prominent position in this market. It should be projected a list clear policies to support the development of local technologies for the electric vehicle, or few advances will be achieved in this technological field / Mestrado / Politica Cientifica e Tecnologica / Mestre em Política Científica e Tecnológica
|
129 |
Alternative utility factor versus the SAE J2841 standard method for PHEV and BEV applicationsPaffumi, Elena, De Gennaro, Michele, Martini, Giorgio 21 December 2020 (has links)
This article explores the potential of using real-world driving patterns to derive PHEV and BEV utility factors and evaluates how different travel and recharging behaviours affect the calculation of the standard SAE J2841 utility factor. The study relies on six datasets of driving data collected monitoring 508,607 conventional fuel vehicles in six European areas and a dataset of synthetic data from 700,000 vehicles in a seventh European area. Sources representing the actual driving behaviour of PHEV together with the WLTP European utility factor are adopted as term of comparison. The results show that different datasets of driving data can yield to different estimates of the utility factor. The SAE J2841 standard method results to be representative of a large variety of behaviours of PHEVs and BEVs' drivers, characterised by a fully-charged battery at the beginning of the trip sequence, thus being representative for fuel economy and emission estimates in the early phase deployment of EVs, charged at home and overnight. However the results show that the SAE J2841 utility factor might need to be revised to account for more complex future scenarios, such as necessity-driven recharge behaviour with less than one recharge per day or a fully deployed recharge infrastructure with more than one recharge per day.
|
130 |
Analysis of Integration of Plug-in Hybrid Electric Vehicles in the Distribution GridKarnama, Ahmad January 2009 (has links)
The new generation of cars are so-called Plug-in Hybrid Electric Vehicles (PHEVs) which has the grid connection capability. By the introduction of these vehicles, the grid issues will be connected to the private car transportation sector for the first time. The cars from the gird perspective can be considered as a regular load with certain power factor. The effects of this type of new load in distribution grid are studied in this thesis. By modelling the cars as regular load, the effects of the cars in three distinct areas in Stockholm are investigated. The car number in each area is estimated based on the population and commercial density of electricity consumption in the three areas. Afterward, the average electricity consumption by the cars in one day is distributed among 24 hours of the day with peak load in the studied year. This distribution is done by two regulated and unregulated methods. The regulated method is based on the desired pattern of electricity consumption of PHEVs by vehicle owners. On the other hand, the regulated pattern is designed based on encouragement of the car owners to consume electricity for charging their car batteries at low-power hours of day (usually midnight hours). The power system from high voltage lines in Sweden down to 11 kV substations in Stockholm simulated in PSS/E software has been used in this study. The automation program (written in Python) is run in order to get the output report (voltage variation and losses) of the load flow calculations for different hours of day by adding the required power for PHEVs both by regulated and unregulated patterns. The results show the possibility of introducing growing number of cars till year 2050 in each area with existing grid infrastructures. Moreover, the number of cars, yearly and daily electric consumption for PHEVs in pure electric mode are shown in this project and the effects of regulated electricity consumption are investigated. It is concluded that since the car number is estimated based on the population, the areas with higher residential characteristics are more problematic for integration of PHEVs from capacity point of view. Moreover, by regulating the charging pattern of PHEVs, the higher number of PHEVs can be integrated to the grid with the existing infrastructures. In addition, the losses have been decreased in regulated pattern in comparison with unregulated pattern with the same power consumption. The voltage in different substations is within the standard boundaries by adding 100 percent of PHEVs load for both regulated and unregulated patterns in all three areas.
|
Page generated in 0.0496 seconds