• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 15
  • 15
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Water dynamics at the MHCI-peptide binding interface studied by Hydrogen-deuterium exchange and structural studies of Apo A-I mimetic peptide-lipid binding

Jin, Yining 10 October 2014 (has links)
No description available.
12

SOLID-STATE HYDROGEN-DEUTERIUM EXCHANGE MASS SPECTROMETRY OF LYOPHILIZED PEPTIDES

Rajashekar Kammari (9095855) 08 July 2020 (has links)
<div>Proteins are susceptible to physical and chemical degradation in solution, which can lead to the loss of therapeutic activity and increase the potential for immunogenic responses when administered. Many degradation reactions are mediated by water, and therefore the proteins are often formulated as solids in which degradation rates are slowed significantly. Lyophilization is the most common method for producing solid protein formulations, which removes the water by sublimation and desorption under vacuum from the frozen protein solutions. Lyophilization requires excipients to protect the protein from the inherent stresses involved in the process. Degradation can still occur during lyophilization and storage, and needs to be characterized in order to develop a successful formulation with desired storage stability. The analytical techniques to characterize solid-state proteins are limited, however, and many do not provide site-specific information and lack the ability to predict stability beforehand.</div><div>Recently, solid-state hydrogen-deuterium exchange mass spectrometry (ssHDX-MS) has been developed to characterize proteins in solid powders with peptide level resolution. The technique was found to be sensitive to formulation and process changes. The ssHDX-MS metrics are highly correlated to the long-term storage stability, suggesting that the method can serve as a formulation screening tool. This dissertation aims to evaluate the factors affecting ssHDX kinetics and to develop a mechanistic understanding of the exchange process in solid samples, which in turn will support the solid-state protein development and enable it to be conducted in a more a cost and time-effective way. First, the contribution of peptide-matrix interactions to deuterium incorporation kinetics in the absence of higher-order structure was assessed using lyophilized poly-D, L-alanine peptides. Deuterium incorporation depended on excipient type and D<sub>2</sub>O<sub>(g)</sub> activity in the solid samples. A reversible pseudo-first-order kinetic model was proposed and validated using the experimental data. Second, the reversibility of the hydrogen-deuterium exchange reaction in the solid-state was evaluated to support the ssHDX mechanistic model further. The reaction was found to be reversible irrespective of initial conditions and independent of the excipient type. Pre-hydration of the peptide samples prior to deuterium labeling did not affect deuterium incorporation in amorphous samples compared to the controls not subjected to pre-hydration. Third, the contribution of peptide secondary structure to deuterium uptake kinetics was quantified using structured PDLA analogs. The deuterium incorporation in structured peptides was less than that of the PDLA peptides suggesting that both peptide structure and peptide-matrix interactions contribute to ssHDX-MS. Finally, a quantitative data analysis method was presented that allows the interpretation of ssHDX-MS data of a protein relative to controls. Altogether, the findings present a comprehensive mechanistic understanding of the ssHDX-MS of proteins that is relevant to the industry.</div>
13

Apolipoprotein A-I Self-Association and the Formation of High Density Lipoprotein

Topbas, Celalettin 17 September 2015 (has links)
No description available.
14

Apports de l'échange hydrogène/deutérium couplé à la spectrométrie de masse en protéomique structurale pour la caractérisation de complexes multi-protéiques. / Hydrogen/deuterium exchange coupled to mass spectrometry in structural proteomics

Terral, Guillaume 08 July 2016 (has links)
Ce travail de thèse porte sur développement de méthodes en spectrométrie de masse structurale pour l’analyse de protéines recombinantes et de leurs complexes associés. L’objectif central s’est porté sur des développements méthodologiques en échange hydrogène/deutérium couplé à la spectrométrie de masse (HDX-MS). Les techniques biophysiques de caractérisation structurale à haute résolution comme la cristallographie ou la RMN se heurtent régulièrement à des problèmes de productions de cristaux, de taille de complexes analysables ou encore de quantité de matériel nécessaire importante. Le développement de méthodes spécifiques HDX-MS a permis de réaliser une caractérisation structurale de systèmes protéiques variés, et réfractaires aux approches haute résolution. La combinaison de cette approche à différents outils de MS structurale est aussi illustrée, et montre tout son intérêt pour l’obtention d’informations à résolution augmentée. / This thesis work focuses on development of structural mass spectrometry methods for the analysis of recombinant proteins and their associated complex. The central objective has focused on the development of hydrogen/deuterium exchange coupled to mass spectrometry approaches (HDX-MS). The high resolution biophysical techniques for structural characterization such as crystallography or NMR regularly face problems of crystal productions, size analyzable complex or quantity of material required. The development of specific HDX-MS methods allowed the characterization of various, and refractory protein systems to high resolution approaches. The combination of this approach with complementary structural MS tools is also illustrated, and shows its interest to obtain increased resolution information.
15

Structural characterization of alpha-synuclein aggregates seeded by patient material

Strohäker, Timo 14 December 2018 (has links)
No description available.
16

Studium vlivu kofaktoru na strukturu proteinu pomocí hmotnostní spektrometrie / Characterization of cofactor influence on protein structure using mass spectrometry

Rosůlek, Michal January 2015 (has links)
Bacterial protein WrbA from E. coli is the founding member of a new family of FMN-dependent NAD(P)H oxidoreductases, forming a functional and structural bridge between bacterial flavodoxin and certain mammalian NAD(P)H:quinone oxidoreductase. For these reasons, protein WrbA is recently intensively studied using various analytical and computing methods. Protein WrbA participates in the protection of cells against oxidative stress, but precise function of the protein WrbA in vivo is still unknown. Protein WrbA forms multimers in solutions. In μM concentrations and at low temperature (4 řC) the protein is in the form of a dimer, with increasing temperature becomes tetrameric. Available three-dimensional crystal structure contains the information about the tetrameric form of the protein, the dimeric form has not been structurally characterized. This thesis was focused on the study of the dynamic behavior of protein WrbA in solution using methods of hydrogen-deuterium exchange and chemical cross-linking followed by mass spectrometric analysis with high resolution (FT-ICR). Behavior of the protein was monitored according to the presence of cofactor FMN. Effect of temperature and protein concentration was also studied. Hydrogen-deuterium exchange provided information about solvent accessibility and...
17

FIBRILLATION OF THERAPEUTIC PEPTIDES

Harshil K Renawala (12456981) 25 April 2022 (has links)
<p>Therapeutic peptides have become a clinically and commercially important drug class providing novel treatment options in variety of disease areas. Today, more than 80 peptide drugs are marketed worldwide and hundreds more are in development. However, the development of peptide drugs can be hindered by their tendency to self-associate to form fibrils, an impurity that can affect potency and increase the potential for adverse immune responses in patients. Fibrillation of therapeutic peptides can present significant quality concerns and poses challenges for manufacturing and storage. From a pharmaceutical development perspective, early detection of instabilities can inform the development of mitigation strategies to minimize the risk of product failure and avoid costly delays in clinical development. A fundamental understanding of the mechanisms of fibrillation is critical for the rational design of fibrillation-resistant peptide drugs and formulations.</p> <p>The objective of this dissertation was to develop structurally modified fibrillation-resistant peptides based on a mechanistic understanding of the fibrillation process. The therapeutic peptides studied were human calcitonin (hCT), a glucagon/GLP-1 analog, and human insulin B-chain (INSB). Pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS) and other biophysical methods were used to provide mechanistic understanding of the intermolecular interactions and structural transitions during peptide fibrillation. Coupled with proteolytic digestion, pulsed HDX-MS of fibrillating peptides enabled identification of the residues involved in the early interactions leading to fibrillation based on their differential deuterium exchange rates. The high-resolution residue level information was used to make site-specific modifications to hCT, with phosphorylation in the central region resulting in complete inhibition of fibrillation for the phospho-Thr-13 hCT analog under the stress conditions employed. Reversible ‘prodrug’ modifications such as phosphorylation can aid the rational design of fibrillation-resistant therapeutic peptides. Furthermore, the effects of structural modifications on peptide fibrillation were evaluated by reducing the Cys1-Cys7 disulfide bond in hCT, and by C-terminal amidation or substitution with a helix-stabilizing residue (α-aminoisobutyric acid, Aib) in the glucagon/GLP-1 analog peptide. Finally, studies of insulin B-chain probed fibrillation mechanisms of this therapeutically important peptide, contributing to our understanding of the mechanisms of insulin fibrillation with the broad goal of developing fibrillation-resistant, rapid-acting, monomeric insulin analogs. Overall, the results demonstrate that small structural changes can have significant effects on peptide fibrillation, that pulsed HDX-MS can be used to probe these effects, and that an understanding of these effects can inform the rational development of fibrillation-resistant peptide drugs. </p>
18

Solid-state Stability of Antibody-drug Conjugates

Eunbi Cho (11192397) 28 July 2021 (has links)
<p>Antibody-drug conjugates (ADCs) combine the cytotoxicity of traditional chemotherapy with the site-specificity of antibodies by conjugating payloads to antibodies with immunoaffinity. However, the conjugation alters the physicochemical properties of antibodies, increasing the risks of various types of degradation. The effects of common risk factors such as pH, temperature, and light on the stability of ADCs differ from their effects on monoclonal antibodies (mAb) due to these altered physicochemical properties. </p> <p>To date, ADC researchers have developed linkers with improved <i>in vivo</i> stability, and begun to understand the deconjugation mechanisms <i>in vivo</i>. In contrast, the <i>in vitro</i> stability of ADCs has not gained comparable attention. All nine of the U.S. FDA approved ADCs are lyophilized to minimize the potential for degradation. However, there are few studies on the solid-state stability of ADCs. To evaluate lyophilized solids, pharmaceutical development relies heavily on accelerated stability studies, which take months to determine the best formulation. Characterization methods that are often used orthogonally with accelerated studies include Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, near-infrared spectroscopy (NIR), differential scanning calorimetry (DSC), and x-ray powder diffraction (XRPD). Results from these methods are often poorly correlated with stability, however. Thus, stability evaluation of solid-state ADC products, and other recombinant protein drugs, is often a bottleneck in their development.</p> <p>To provide knowledge on how to improve the <i>in vitro</i> stability of lyophilized ADC formulations, the solid-state stability of ADC formulations with varying risk factors was studied in this dissertation project. The first study investigated interactions between an ADC and excipients in terms of solid-state stability enhancement. The second study investigated the process-driven instability of ADCs during lyophilization using various concentrations of ADCs. The first two studies incorporate a new method called solid-state hydrogen/deuterium exchange coupled with mass spectrometry (ssHDX-MS) as an analytical predictor of solid-state stability. The last study investigated the effects of pH on the stability of labile hydrazones, as a model for common linker chemistry used in ADCs. </p>
19

Computational Structure Prediction for Antibody-Antigen Complexes From Hydrogen-Deuterium Exchange Mass Spectrometry: Challenges and Outlook

Tran, Minh H., Schoeder, Clara T., Schey, Kevin L., Meiler, Jens 11 July 2023 (has links)
Although computational structure prediction has had great successes in recent years, it regularly fails to predict the interactions of large protein complexes with residue-level accuracy, or even the correct orientation of the protein partners. The performance of computational docking can be notably enhanced by incorporating experimental data from structural biology techniques. A rapid method to probe protein-protein interactions is hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS has been increasingly used for epitope-mapping of antibodies (Abs) to their respective antigens (Ags) in the past few years. In this paper, we review the current state of HDX-MS in studying protein interactions, specifically Ab-Ag interactions, and how it has been used to inform computational structure prediction calculations. Particularly, we address the limitations of HDX-MS in epitope mapping and techniques and protocols applied to overcome these barriers. Furthermore, we explore computational methods that leverage HDX-MS to aid structure prediction, including the computational simulation of HDX-MS data and the combination of HDX-MS and protein docking. We point out challenges in interpreting and incorporating HDX-MS data into Ab-Ag complex docking and highlight the opportunities they provide to build towards a more optimized hybrid method, allowing for more reliable, high throughput epitope identification.
20

Method Development in Quantitative and Structural Proteomics using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

Hagman, Charlotte January 2005 (has links)
<p>In this thesis, methods for studying different aspects of proteomics were developed with Fourier Transform Ion Cyclotron Resonance, (FTICR), mass spectrometry. The FTICR technique provides ultra-high mass resolving power, mass accuracy at sub ppm level and sensitivity in the attomole region.</p><p>Methods for quantifying biomarkers in body fluids such as cerebrospinal fluid, (CSF), and plasma were developed. Two sets of global markers with different properties were used for quantitative analysis; S-Methyl Thioacetimidate, (SMTA), and S-Methyl Thiopropionimidate, (SMTP), and [H<sub>4</sub>]- and [D<sub>4</sub>]-1-Nicotinoyloxy succinimide ester. Reduced ion suppression and higher sensitivity was obtained by coupling a High Performance Liquid Chromatography, (HPLC), system to the FTICR mass spectrometer.</p><p>In body fluids, proteins and peptides are present in a broad dynamic concentration range. Therefore, depleting abundant proteins prior to analysis results in decreased ion suppression and increased sensitivity. Two commercial depletion kits were evaluated with the SMTA- and SMTP-markers.</p><p>For both types of global markers, the experimental error for quantitative analysis of abundant proteins was less than 30%. This provides a lower limit for the protein up- and down regulations in complex solutions that can be monitored with HPLC-FTICR mass spectrometry.</p><p>Together with the identity and quantity of selected proteins the structure, dynamics and interactions with other molecules are of great importance. The later can be elucidated with Hydrogen/Deuterium Exchange, (HDX), mass spectrometry. Structural information at high resolution can be obtained with Collision-Induced Dissociation, (CID), HDX mass spectrometry. In this thesis, exchange rates of amide hydrogens in peptides were in excellent agreement with NMR results.</p><p>In some cases, the CID-fragments have different gas-phase exchange properties and as a consequence the solution phase exchange process can not be monitored. By applying Electron Capture Dissociation, (ECD), at ultra-high vacuum, the exchange process at a specific residue could be monitored.</p>

Page generated in 0.363 seconds