• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 283
  • 196
  • 68
  • 27
  • 24
  • 9
  • 9
  • 8
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 684
  • 191
  • 135
  • 132
  • 128
  • 95
  • 77
  • 72
  • 71
  • 71
  • 68
  • 67
  • 66
  • 63
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Pareamento bacia-lagoa usando modelagem hidrológica-hidrodinâmica e sensoriamento remoto

Munar Samboní, Andrés Mauricio January 2017 (has links)
A gestão de recursos hídricos tornou-se cada vez mais complexa devido ao rápido crescimento sócio-econômico e as mudanças ambientais nas bacias hidrográficas nas últimas décadas. Modelos computacionais são importantes ferramentas de suporte na gestão de recursos hídricos e tomada de decisões devido a sua funcionalidade, provendo informações importantes sobre os principais processos físicos, químicos e biológicos, e permitindo melhorar o entendimento desses processos, os quais ocorrem em diferentes escalas espaciais e temporais. Na presente tese, o objetivo foi compreender o funcionamento hidrológico do sistema integrado bacia hidrográfica - lagoa, e os efeitos na hidrodinâmica do lago, utilizando como suporte o acoplamento da modelagem hidrológica - hidrodinâmica, e o uso de técnicas de sensoriamento remoto para o monitoramento de parâmetros de qualidade da água (e.g., clorofilaa, temperatura da superfície d’água e níveis da água). A área de estudo é a bacia hidrográfica da Lagoa Mirim, localizada no sul do Brasil, possuindo uma área total de 58.000 km2 (56% no Uruguai e o restante no Brasil). Foram propostos e testados modelos empíricos para estimativa de clorofila-a emumlago raso subtropical, baseados em imagens do sensor MODIS e técnicas estatísticas. Além disso, foi desenvolvido e avaliado o acoplamento da modelagem hidrológica-hidrodinâmica de grande escala e o sensoriamento remoto. O modelo hidrológico distribuído de grande escala MGBIPH acoplado com o modelo hidrodinâmico IPH-ECO foi utilizado para simular a bacia hidrográfica e os principais componentes hidrodinâmicos da Lagoa Mirim. O modelo mostrou bom desempenho quando comparado com observações de vazões, além de dados provenientes de sensoriamento remoto, através de altimetria espacial. As simulações mostraram importantes aspectos sobre a estrutura de fluxo, campos de velocidade e níveis d’água na lagoa, assim como a influência de grandes rios, forçantes externas como o vento (intensidade e direção) e o impacto do estressor antrópico (retiradas para irrigação) no sistema. As simulações permitiram avaliar aspectos relacionados com as variações espaciais e temporais (diurna, mensal, sazonal e inter-anual) da temperatura da superfície da água, a dinâmica dos fluxos de calor (sensível e latente) e os efeitos de eventos meteorológicos de pequena escala como frentes frias, os quais têm um impacto significativo sobre a temperatura superficial da água e os fluxos de calor na lagoa. Quanto aos modelos empíricos para estimativa de clorofila-a a partir do MODIS, os resultados mostram que um simples e eficiente modelo desenvolvido a partir de análise de regressão múltipla, apresentou ligeiras vantagens sobre os modelos de redes neurais artificiais, modelos multiplicativos não paramétricos e modelos empíricos (e.g., Appel, Kahru, FAI e O14a) usualmente utilizados na estimativa de Chl-a em ambientes aquáticos. Resultados também indicam que é inapropriado generalizar um único modelo desenvolvido a partir do conjunto total de dados, para estimar concentrações de Chl-a na lagoa, o que corrobora a heterogeneidade espacial na distribuição de Chl-a e as diferenças entre regiões (litoral e pelágica). A modelagem hidrológica-hidrodinâmica de grande escala apoiada por informação de sensoriamento remoto, mostrou ser uma abordagem promissora para o entendimento da estrutura e funcionamento de lagoas rasas de grande porte e longo prazo, úteis para a gestão integrada dos recursos hídricos. / The last decade, the water resource management is being complex due to the rapid socioeconomic development and environmental changes in river basins. Computations models are important support tools in water resource management and make decision providing important information and allowing a better comprehension of the physical, chemical and biologic processes, which occur in di erent temporal/spatial scales. In this thesis, the objective was to understand the hydrological functioning of the integrated basin- lake system and its e ects on hydrodynamics, using hydrodynamic - hydrodynamic modeling and water quality monitoring (e.g., chlorophyll-a, water surface temperature and water levels) from remote sensing techniques. The study area is the Lake Mirim basin, located between Brazil and Uruguay (basin total area 58.000 km2). Empirical models were proposed and tested to chlorophyll-a estimation in a shallow subtropical lake, based on MODIS imagery and statistics techniques. In addition, we developed and assessed the coupling of large scale hydrological/hydrodynamic modeling and remote sensing techniques. The large-scale distributed hydrological model MGB-IPH coupled with the hydrodynamic model IPHECO were used to simulate the river basin and the hydrodynamic components of the Lake Mirim. The coupled model showed good performance when compared to in-situ measurements and satellite altimetry data. The simulations showed important aspects relate to flow structure, velocity fields and lake water levels, as well as the influence of large rivers, external forcing as such the wind (intensity and direction), and the impact of anthropogenic stressors (irrigation withdrawals) in the system. The simulations allowed assessing the spatial and temporal variations (diurnal, monthly, seasonal and inter-annual) in the water surface temperature, heat fluxes dynamics (sensible and latent) and the e ects of short time-scale events, as such cold fronts passages over the lake, which cause strong impacts on the water surface temperature and heat fluxes in the lake. Regarding the empirical models developed to chlorophyll-a estimation from MODIS imagery, the results showed that a simple and e cient model developed from multiple regression analysis, performed best in comparison with artificial neural network models, non-parametric multiplicative models, and empirical models (e.g., Appel, Kahru, FAI and O14a) common used in the Chl-a estimation in aquatics environments. Results also indicated that is inappropriate to generalize a single model developed from the total datasets to estimates Chl-a in the lake, which corroborates the spatial heterogeneity (Chl-a distribution) and the di erences among regions (littoral and pelagic). The synergy between large-scale hydrological-hydrodynamic modeling, in situ measurements and remote sensing techniques provided a promising approach to improve the comprehension of the structure and ecosystem functioning of large shallow lakes in long-term time scale, useful to water resources management.
292

Impact du forçage pluviométrique sur les inondations du fleuve Niger à Niamey : Etude à partir de données satellitaires et in-situ / Impact of rainfall forcing on the floods of Niger river in Niamey : study based on satellite and in-situ data

Cassé, Claire 26 November 2015 (has links)
Depuis le développement des mesures satellites de nombreuses missions spatiales sont dédiées au suivi de l'atmosphère et de la surface terrestre. Ces travaux de thèse s'inscrivent dans le cadre de la mission Megha-Tropiques dédiée au cycle de l'eau et de l'énergie en zone tropicale. L'objectif est d'évaluer le potentiel des estimations de précipitation par satellite pour des applications hydrologiques en zone tropicale. Les Tropiques réunissent les plus grands fleuves du globe, mais ne bénéficient pas de réseaux d'observation in-situ denses et continus permettant une gestion intégrée efficace de la ressource et des systèmes d'alertes. Les estimations des précipitations issues des systèmes d'observation satellite offrent une alternative pour ces bassins peu ou pas instrumentés et souvent exposés aux extrêmes climatiques. C'est le cas du fleuve Niger, qui a subi une grande variabilité climatique depuis les années 1950, mais aussi d'importants changements environnementaux et hydrologiques. Depuis les années 2000, le Niger moyen connaît une recrudescence des inondations pendant la période de crue Rouge (engendrée par ses affluents sahéliens pendant la mousson). A Niamey, des niveaux record de hauteur d'eau et de période d'inondation ont été enregistrés en 2003, 2010, 2012 et 2013, engendrant de nombreuses pertes humaines et matérielles. Ces travaux analysent l'influence du forçage pluviométrique sur les inondations liées à la crue Rouge à Niamey. Une gamme de produits pluviométriques (in situ et satellite) et la modélisation hydrologique (ISBA-TRIP) sont combinés pour étudier : (i) l'apport des produits satellite pour diagnostiquer la crue Rouge récente, (ii) l'impact des caractéristiques des produits et de leurs incertitudes sur les simulations et enfin (iii) l'évaluation du rôle des précipitations, face aux changements de conditions de surface, dans l'évolution de la crue Rouge à Niamey depuis les années 1950. L'étude a mis en évidence l'impact des caractéristiques des estimations des précipitations (cumul, intensité et distribution spatio-temporelle) sur la modélisation hydrologique et le potentiel des produits satellites pour le suivi des inondations. Les caractéristiques des précipitations se propageant dans la modélisation, la détection des inondations est plus efficace avec une approche relative à chaque produit plutôt qu'avec un seuil absolu. Ainsi des produits présentant des biais peuvent être envisagés pour la simulation hydrologique et la détection des inondations. Le nouveau produit TAPEER de la mission MT présente un fort potentiel hydrologique, en 2012 et pour la zone d'étude. D'autre part, l'étude de la propagation de l'erreur associée à ces précipitations a mis en évidence, la nécessité de déterminer la structure du champ d'erreur pour l'utilisation d'une telle information en hydrologie. Enfin la modélisation a été utilisée comme levier pour décomposer les sensibilités de la crue Rouge aux variations des précipitations et des conditions de surface. Pour simuler les changements hydrologiques entre les périodes 1953-1982 et 1983-2012, les changements d'occupation du sol et d'aire de drainage doivent être pris en compte. Puis les variations des précipitations peuvent expliquer les changements majeurs décennaux et annuels entre les années 1983 et 2012. / Since the development of satellite based remote sensing in the 1970s, many missions have been dedicated to monitoring the terrestrial atmosphere and surfaces. Some of these satellites are dedicated to the Tropics with specific orbits. Megha-Tropiques (MT) is devoted to the water and energy cycle in the tropical atmosphere and provides an enhanced sampling for rainfall estimation in the tropical region. This PhD work was initiated within MT hydro-meteorological activities, with the objective of assessing the hydrological potential of satellite rainfall products in the Tropics. The world most important rivers lay in tropical areas where the in situ observation networks are deficient. Alternative information is therefore needed for water resource management and alert systems. The present work focuses on the Niger River a basin which has undergone drastic climatic variations leading to disasters such as droughts and floods. Since 1950, the Niger has been through 3 main climatic periods: a wet period (1950-1960), a long and intense drought period (1970-1980) and since 1990 a partial recovery of the rainfall. These climatic variations and the anthropic pressure, have modified the hydrological behaviour of the basin. Since 2000, the middle Niger River has been hit by an increase of floods hazards during the so-called Red flood period. In Niamey city, the highest river levels and the longest flooded period were recorded in 2003, 2010, 2012 and 2013, leading to heavy casualties and property damage. This study combines hydrological modelling and a variety of rainfall estimation products (satellite and in-situ) to meet several objectives: (i) the simulation of the Niamey Red flood and the detection of floods (during the recent period 2000-2013) (ii) the study of the propagation of satellite rainfall errors in hydrological modelling (iii) the evaluation of the role of rainfall variability, and surface conditions, in the changes of the Red flood in Niamey since the 50s. The global model ISBA-TRIP, is run with a resolution of 0.5° and 3h, and several rainfall products were used as forcing. Products derived from gauges (KRIG, CPC), pure satellite products (TAPEER, 3B42RT, CMORPH, PERSIANN) and mixed satellite products adjusted by rain gauges (3B42v7, RFE2, PERSIANN-CDR). This work confirms the hydrological potential of satellite rainfall products and proposes an original approach to overcome their biases. It highlights the need for documenting the errors associated with the rainfall products and the error structure. Finally, the hydrological modelling results since the 1950s have given a new understanding of the relative role of rainfall and surface conditions in the drastic increase of flood risk in Niamey.
293

The hydrological flux of organic carbon at the catchment scale: a case study in the Cotter River catchment, Australia

Sabetraftar, Karim, Karim.Sabetraftar@anu.edu.au January 2005 (has links)
Existing terrestrial carbon accounting models have mainly investigated atmosphere-vegetationsoil stocks and fluxes but have largely ignored the hydrological flux of organic carbon. It is generally assumed that biomass and soil carbon are the only relevant pools in a landscape ecosystem. However, recent findings have suggested that significant amounts of organic carbon can dissolve (dissolved organic carbon or DOC) or particulate (particulate organic carbon or POC) in water and enter the hydrological flux at the catchment scale. A significant quantity of total organic carbon (TOC) sequestered through photosynthesis may be exported from the landscape through the hydrological flux and stored in downstream stocks.¶ This thesis presents a catchment-scale case study investigation into the export of organic carbon through a river system in comparison with carbon that is produced by vegetation through photosynthesis. The Cotter River Catchment was selected as the case study. It is a forested catchment that experienced a major wildfire event in January 2003. The approach is based on an integration of a number of models. The main input data were time series of in-stream carbon measurements and remotely sensed vegetation greenness. The application of models to investigate diffuse chemical substances has dramatically increased in the past few years because of the significant role of hydrology in controlling ecosystem exchange. The research firstly discusses the use of a hydrological simulation model (IHACRES) to analyse organic carbon samples from stream and tributaries in the Cotter River Catchment case study. The IHACRES rainfall-runoff model and a regionalization method are used to estimate stream-flow for the 75 sub-catchments. The simulated streamflow data were used to calculate organic carbon loads from concentrations sampled at five locations in the catchment.¶ The gross primary productivity (GPP) of the vegetation cover in the catchment was estimated using a radiation use efficiency (RUE) model driven by MODIS TERRA data on vegetation greenness and modeled surface irradiance (RS). The relationship between total organic carbon discharged in-stream and total carbon uptake by plants was assessed using a cross-correlation analysis.¶ The IHACRES rainfall-runoff model was successfully calibrated at three gauged sites and performed well. The results of the calibration procedure were used in the regionalization method that enabled streamflow to be estimated at ungauged locations including the seven sampling sites and the 75 sub-catchment areas. The IHACRES modelling approach was found appropriate for investigating a wide range of issues related to the hydrological export of organic carbon at the catchment scale. A weekly sampling program was implemented to provide estimates of TOC, DOC and POC concentrations in the Cotter River Catchment between July 2003 and June 2004. The organic carbon load was estimated using an averaging method.¶ The rate of photosynthesis by vegetation (GPP) was successfully estimated using the radiation use efficiency model to discern general patterns of vegetation productivity at sub-catchment scales. This analysis required detailed spatial resolution of the GPP across the entire catchment area (comprising 75 sub-catchment areas) in addition to the sampling locations. Important factors that varied at the catchment scale during the sampling period July 2003 – June 2004, particularly the wildfire impacts, were also considered in this assessment. ¶ The results of the hydrologic modelling approach and terrestrial GPP outcome were compared using cross correlation and regression analysis. This comparison revealed the likely proportion of catchment GPP that contributes to in-stream hydrological flux of organic carbon. TOC Load was 0.45% of GPP and 22.5 - 25% of litter layer. As a result of this investigation and giving due consideration to the uncertainties in the approach, it can be concluded that the hydrological flux of organic carbon in a forested catchment is a function of gross primary productivity.
294

Hydrologic Impacts Of Clmate Change : Quantification Of Uncertainties

Raje, Deepashree 12 1900 (has links)
General Circulation Models (GCMs), which are mathematical models based on principles of fluid dynamics, thermodynamics and radiative transfer, are the most reliable tools available for projecting climate change. However, the spatial scale on which typical GCMs operate is very coarse as compared to that of a hydrologic process and hence, the output from a GCM cannot be directly used in hydrologic models. Statistical Downscaling (SD) derives a statistical or empirical relationship between the variables simulated by the GCM (predictors) and a point-scale meteorological series (predictand). In this work, a new downscaling model called CRF-downscaling model, is developed where the conditional distribution of the hydrologic predictand sequence, given atmospheric predictor variables, is represented as a conditional random field (CRF) to downscale the predictand in a probabilistic framework. Features defined in the downscaling model capture information about various factors influencing precipitation such as circulation patterns, temperature and pressure gradients and specific humidity levels. Uncertainty in prediction is addressed by projecting future cumulative distribution functions (CDFs) for a number of most likely precipitation sequences. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework, and changes in the non-parametric distribution of precipitation and dry and wet spell lengths are projected. Application of the method is demonstrated with the case study of downscaling to daily precipitation in the Mahanadi basin in Orissa, with the A1B scenario of the MIROC3.2 GCM from the Center for Climate System Research (CCSR), Japan. An uncertainty modeling framework is presented in this work, which combines GCM, scenario and downscaling uncertainty using the Dempster-Shafer (D-S) evidence theory for representing and combining uncertainty. The methodology for combining uncertainties is applied to projections of hydrologic drought in terms of monsoon standardized streamflow index (SSFI-4) from streamflow projections for the Mahanadi river at Hirakud. The results from the work indicate an increasing probability of extreme, severe and moderate drought and decreasing probability of normal to wet conditions, as a result of a decrease in monsoon streamflow in the Mahanadi river due to climate change. In most studies to date, the nature of the downscaling relationship is assumed stationary, or remaining unchanged in a future climate. In this work, an uncertainty modeling framework is presented in which, in addition to GCM and scenario uncertainty, uncertainty in the downscaling relationship itself is explored by linking downscaling with changes in frequencies of modes of natural variability. Downscaling relationships are derived for each natural variability cluster and used for projections of hydrologic drought. Each projection is weighted with the future projected frequency of occurrence of that cluster, called ‘cluster-linking’, and scaled by the GCM performance with respect to the associated cluster for the present period, called ‘frequency scaling’. The uncertainty modeling framework is applied to a case study of projections of hydrologic drought or SSFI-4 classifications, using projected streamflows for the Mahanadi river at Hirakud. It is shown that a stationary downscaling relationship will either over- or under-predict downscaled hydrologic variable values and associated uncertainty. Results from the work show improved agreement between GCM predictions at the regional scale, which are validated for the 20th century, implying that frequency scaling and cluster-linking may indeed be a valid method for constraining uncertainty. To assess the impact of climate change on reservoir performance, in this study, a range of integrated hydrologic scenarios are projected for the future. The hydrologic scenarios incorporate increased irrigation demands; rule curves dictated by increased need for flood storage and downscaled projections of streamflow from an ensemble of GCMs and emission scenarios. The impact of climate change on multipurpose reservoir performance is quantified, using annual hydropower and RRV criteria, under GCM and scenario uncertainty. The ‘business-as-usual’ case using Standard Operating Policy (SOP) is studied initially for quantifying impacts. Adaptive Stochastic Dynamic Programming (SDP) policies are subsequently derived for the range of future hydrologic scenarios, with the objective of maximizing reliabilities with respect to multiple reservoir purposes of hydropower, irrigation and flood control. It is shown that the hydrologic impact of climate change is likely to result in decreases in performance criteria and annual hydropower generation for Hirakud reservoir. Adaptive policies show that a marginal reduction in irrigation and flood control reliability can achieve increased hydropower reliability in future. Hence, reservoir rules for flood control may have to be revised in the future.
295

Improving Runoff Estimation at Ungauged Catchments

Zelelew, Mulugeta January 2012 (has links)
Water infrastructures have been implemented to support the vital activities of human society. The infrastructure developments at the same time have interrupted the natural catchment response characteristics, challenging society to implement effective water resources planning and management strategies. The Telemark area in southern Norway has seen a large number of water infrastructure developments, particularly hydropower, over more than a century. Recent developments in decision support tools for flood control and reservoir operation has raised the need to compute inflows from local catchments, most of which are regulated or have no observed data. This has contributed for the motivation of this PhD thesis work, with an aim of improving runoff estimation at ungauged catchments, and the research results are presented in four manuscript scientific papers.  The inverse distance weighting, inverse distance squared weighting, ordinary kriging, universal kriging and kriging with external drift were applied to analyse precipitation variability and estimate daily precipitation in the study area. The geostatistical based univariate and multivariate map-correlation concepts were applied to analyse and physically understand regional hydrological response patterns. The Sobol variance based sensitivity analysis (VBSA) method was used to investigate the HBV hydrological model parameterization significances on the model response variations and evaluate the model’s reliability as a prediction tool. The HBV hydrological model space transferability into ungauged catchments was also studied.  The analyses results showed that the inverse distance weighting variants are the preferred spatial data interpolation methods in areas where relatively dense precipitation station network can be found.  In mountainous areas and in areas where the precipitation station network is relatively sparse, the kriging variants are the preferred methods. The regional hydrological response correlation analyses suggested that geographic proximity alone cannot explain the entire hydrological response correlations in the study area. Besides, when the multivariate map-correlation analysis was applied, two distinct regional hydrological response patterns - the radial and elliptical-types were identified. The presence of these hydrological response patterns influenced the location of the best-correlated reference streamgauges to the ungauged catchments. As a result, the nearest streamgauge was found the best-correlated in areas where the radial-type hydrological response pattern is the dominant. In area where the elliptical-type hydrological response pattern is the dominant, the nearest reference streamgauge was not necessarily the best-correlated. The VBSA verified that varying up to a minimum of four to six influential HBV model parameters can sufficiently simulate the catchments' responses characteristics when emphasis is given to fit the high flows. Varying up to a minimum of six influential model parameters is necessary to sufficiently simulate the catchments’ responses and maintain the model performance when emphasis is given to fit the low flows. However, varying more than nine out of the fifteen HBV model parameters will not make any significant change on the model performance.  The hydrological model space transfer study indicated that estimation of representative runoff at ungauged catchments cannot be guaranteed by transferring model parameter sets from a single donor catchment. On the other hand, applying the ensemble based model space transferring approach and utilizing model parameter sets from multiple donor catchments improved the model performance at the ungauged catchments. The result also suggested that high model performance can be achieved by integrating model parameter sets from two to six donor catchments. Objectively minimizing the HBV model parametric dimensionality and only sampling the sensitive model parameters, maintained the model performance and limited the model prediction uncertainty.
296

Umidade do solo e disponibilidade hídrica na zona das raízes em condições naturais de caatinga preservada / Soil moisture and water availability in the root zone under natural conditions of preserved Caatinga

Costa, Carlos Alexandre Gomes January 2012 (has links)
COSTA, Alexandre Gomes da. Umidade do solo e disponibilidade hídrica na zona das raízes em condições naturais de caatinga preservada. 2012. 182 f. : Tese (doutorado) - Universidade Federal do Ceará, Centro de Ciências Agrárias, Departamento de Engenharia Agrícola, Programa de Pós-Graduação em Engenharia Agrícola, 2012. Fortaleza-CE, 2012. / Submitted by demia Maia (demiamlm@gmail.com) on 2016-08-02T16:07:05Z No. of bitstreams: 1 2012_tese_cagcosta.pdf: 15315410 bytes, checksum: 38127bb5784afef6034c271f1422f7b4 (MD5) / Approved for entry into archive by demia Maia (demiamlm@gmail.com) on 2016-08-02T16:07:38Z (GMT) No. of bitstreams: 1 2012_tese_cagcosta.pdf: 15315410 bytes, checksum: 38127bb5784afef6034c271f1422f7b4 (MD5) / Made available in DSpace on 2016-08-02T16:07:38Z (GMT). No. of bitstreams: 1 2012_tese_cagcosta.pdf: 15315410 bytes, checksum: 38127bb5784afef6034c271f1422f7b4 (MD5) Previous issue date: 2012 / Regarding ecohydrology, the catchment water is distributed over several important compartments. Many studies in semiarid re gions indicate the surface reservoirs as the main water compartments. However, the watershed has greater scope than the water reservoirs contained therein, and water resources in compartments distributed in the watershed (like in soil) should be analyzed not only with regard to ecological uses, but also as spaces of water availability. Therefore, the object ive of this work was to analyze, based on measurements and modeling, the water dynamics in th e soils of a semi-arid basin in preserved Caatinga, and its impact on water availability. Wit h this in mind, it was measured, among others, the soil moisture, every hour, from 2003 to 2010 (2923 days) in the Aiuaba Experimental Basin (AEB, 12 km ²), fully preserved and with average annual rainfall of 560 mm. Monitoring was carried out through three TDR se nsors, one installed in each of the three soil and vegetation associations (SVA) identified in the basin. The research method considered six main steps: i) assessment of the eff ective root depth of preserved Caatinga ii) calibration of humidity TDR sensors iii) space-time representation of soil moisture in each SVA unit iv) analysis of soil water availability in the root zone, v) parameterization of the WASA-SED hydrological model, and vi) parameterizati on of the DiCaSM hydrological model. The results of this research indicate the importance of addressing the temporal analysis of soil moisture and soil water availability in the root zone to maintain the Caatinga biome. More specifically, it was observed that the effecti ve depth of the root system on AEB ranged between 70 and 80 cm in areas with deep soils, but in areas with shallow soils, it was observed that the effective depth of the roots had adapted to the constraints, having been reduced to less than 40 cm. Furthermore, the season al analysis showed that in the dry season, the roots have lengths up to 11 cm smaller, openin g, therefore, secondary pores that facilitate the penetration of what little rain water falls in the dry months (June-December), as well as in the first rains of the wet season. In the two SVAs whose soils are deep and the vegetation is dense, the soil water is 'not available' (ie below the permanent wilting point - WP) during nearly nine months a year (72% of the time), and on ly during three months of the year (25% of the time) the soil water is available. In the re maining 3% of the year (about 10 days) there is gravitational water in these SVAs. In the SVAs whose soil is shallow and whose vegetation is sparse, the dynamics of soil water are different : the time when there is gravitational water, available and unavailable, is practically the same (four months a year). This is due to, among other things, the low soil moisture at the permanen t wilting point of the Udorthent, and to its limited thickness, generating saturation much more frequently than in others that - unlike this one - have deep drainage. The depletion of soil wat er under conditions of moisture below the wilting point was another important result of this research. In the two associations with deep soils and thick vegetation, it was observed – throu ghout the observation period – continuous fall of moisture level until it approached asymptot ically the residual moisture. More detailed analysis showed that the reduction of soil moisture between the WP and the residual moisture level always followed the exponential decay. It was observed, in the association of shallow soil and sparse vegetation, that the moisture did not fall to below the WP, even subjected to the same rigorous climate of the other associations . Considering: (i) that in such a dry soil, the drainage is unlikely, and (ii) that the associated processes of percolation and evaporation should not be responsible for the removal of soil w ater either (since the phenomenon is not observed in SVAs whose soil is shallow and therefor e warmer) , it is raised the hypothesis that the soil drying under these conditions must be caused by water extraction by vegetation. This would strengthen the argument that the Caating a has adapted to survive under water stress. The hydrological models WASA-SED and DiCaSM failed to adequately represent the temporal dynamics of soil water in the AEB. However , the models did satisfactorily reproduce the retention curves of soil moisture, al lowing the representation of the water availability in the root zone for planning purposes . Finally, we managed to evaluate - quantitatively, spatially and temporally – the soil water availability. This availability is of the same order of magnitude of the availability of an o ptimal surface reservoir. The availability in the soil, in quantitative terms, can be almost five times higher than that of the surface reservoir. However, the security associated with su rface water (90%) is much higher than the water permanence available in the AEB: just 28% in areas with deep soils and 65% in areas with shallow soils. / A água na bacia hidrográfica está distribuída em diversos compartimentos importantes no que se refere à ecohidrologia. Muitos estudos em regiões semiáridas apontam os reservatórios superficiais como principais compartimentos de água. Entretanto, a bacia hidrográfica tem maior abrangência que as bacias hidráulicas nela contida, e os recursos hídricos nos compartimentos distribuídos na bacia hidrográfica (como no solo) devem ser analisados não somente no que se refere aos usos ecológicos, mas também como espaço de disponibilidade hídrica. Portanto, o objetivo do trabalho foi analisar, com base em medidas e modelagem, a dinâmica da água nos solos de uma bacia semiárida de Caatinga preservada e seu impacto sobre a disponibilidade hídrica. Para isso foi medida, entre outros, a umidade do solo a cada hora, de 2003 a 2010 (2923 dias) na Bacia Experimental de Aiuaba (BEA, 12 km²), totalmente preservada e com precipitação média anual de 560 mm. O monitoramento foi realizado através de três sensores TDR, um instalado em cada uma das três associações entre solo e vegetação (SVA) identificadas na bacia. O método de investigação considerou seis etapas principais: i) determinação da profundidade efetiva das raízes da Caatinga preservada; ii) calibração dos sensores de umidade tipo TDR; iii) representação espaço-temporal da umidade do solo em cada unidade de SVA; iv) análise da disponibilidade hídrica do solo na zona das raízes; v) parametrização do modelo hidrológico WASA-SED; e vi) parametrização do modelo hidrológico DiCaSM. Os resultados obtidos nesta pesquisa indicam a importância da abordagem da análise temporal da umidade do solo e da disponibilidade hídrica do solo na zona das raízes para a manutenção do bioma Caatinga. Mais especificamente, foi observado que a profundidade efetiva do sistema radicular na BEA oscilou entre 70 e 80 cm nas regiões com solos profundos, porém, em regiões com solos rasos, observou-se que a profundidade efetiva das raízes adaptou-se às restrições, ficando reduzida a menos de 40 cm. Além disso, a análise sazonal demonstrou que, na estação de estio, as raízes têm comprimentos até 11 cm menores, abrindo, portanto, poros secundários que facilitarão a penetração da água nas eventuais chuvas dos meses secos (junho a dezembro), assim como nas primeiras chuvas da estação úmida. Nas duas SVAs cujos solos são profundos e cuja vegetação é densa, a água no solo encontra-se ‘não-disponível’ (isto é, abaixo do ponto de murcha permanente – WP) em quase nove meses ao ano (72% do tempo); e somente durante três meses ao ano (25%) a água no solo encontra-se disponível. Nos 3% restantes do ano (cerca de 10 dias) há água gravitacional nessas SVAs. Na SVA cujo solo é raso e cuja vegetação é esparsa, a dinâmica da água no solo é diferente: o tempo em que há água gravitacional, disponível e não disponível é praticamente o mesmo (quatro meses ao ano). Isso se deve, entre outros, à baixa umidade do solo no ponto de murcha permanente do neossolo litólico; e à sua restrita espessura, gerando saturação muito mais frequentemente que nos demais solos que – ao contrário deste – dispõem de drenagem profunda. A depleção da água no solo sob condições de umidade abaixo do ponto de murcha foi outro resultado importante desta pesquisa. Nas duas associações com solos profundos e vegetação densa, observou-se – ao longo de todo o período investigado – decaimento contínuo da umidade até que a mesma se aproximasse assintoticamente da umidade residual. Análise mais detalhada demonstrou que a redução da umidade do solo entre o WP e a umidade residual sempre obedecia ao decaimento exponencial. Na associação com solo raso e vegetação esparsa observou-se que a umidade não caía para valores inferiores ao WP, mesmo sujeita ao mesmo rigor climático das demais associações. Considerando-se: (i) que em solo tão seco, a drenagem é improvável; e (ii) que os processos associados de percolação e evaporação tampouco devam ser os responsáveis pela retirada de água do solo (posto que o fenômeno não se observa na SVA cujo solo é raso e, portanto, mais quente); levanta-se a hipótese que o secamento do solo nessas condições deva ser causado por extração de água pela vegetação. Isso reforçaria a tese de que a Caatinga dispõe de adaptação para sobreviver mesmo em condições de estresse hídrico. Os modelos hidrológicos WASA-SED e DiCaSM não conseguiram representar adequadamente a dinâmica temporal da água nos solos da BEA. No entanto, os modelos reproduziram satisfatoriamente as curvas de permanência da umidade dos solos, permitindo representar a disponibilidade hídrica na zona das raízes para fins de planejamento. Por fim, logrou-se avaliar – quantitativa, espacial e temporalmente – a disponibilidade hídrica do solo. Esta é da mesma ordem de grandeza da disponibilidade de um reservatório superficial ótimo. Em termos quantitativos, a disponibilidade no solo chega a ser quase cinco vezes superior à do reservatório superficial, entretanto, a garantia associada da água superficial (90%) é bem superior à permanência da água disponível na BEA: apenas 28% nas áreas com solos profundos e 65% nas áreas com solos rasos.
297

Pareamento bacia-lagoa usando modelagem hidrológica-hidrodinâmica e sensoriamento remoto

Munar Samboní, Andrés Mauricio January 2017 (has links)
A gestão de recursos hídricos tornou-se cada vez mais complexa devido ao rápido crescimento sócio-econômico e as mudanças ambientais nas bacias hidrográficas nas últimas décadas. Modelos computacionais são importantes ferramentas de suporte na gestão de recursos hídricos e tomada de decisões devido a sua funcionalidade, provendo informações importantes sobre os principais processos físicos, químicos e biológicos, e permitindo melhorar o entendimento desses processos, os quais ocorrem em diferentes escalas espaciais e temporais. Na presente tese, o objetivo foi compreender o funcionamento hidrológico do sistema integrado bacia hidrográfica - lagoa, e os efeitos na hidrodinâmica do lago, utilizando como suporte o acoplamento da modelagem hidrológica - hidrodinâmica, e o uso de técnicas de sensoriamento remoto para o monitoramento de parâmetros de qualidade da água (e.g., clorofilaa, temperatura da superfície d’água e níveis da água). A área de estudo é a bacia hidrográfica da Lagoa Mirim, localizada no sul do Brasil, possuindo uma área total de 58.000 km2 (56% no Uruguai e o restante no Brasil). Foram propostos e testados modelos empíricos para estimativa de clorofila-a emumlago raso subtropical, baseados em imagens do sensor MODIS e técnicas estatísticas. Além disso, foi desenvolvido e avaliado o acoplamento da modelagem hidrológica-hidrodinâmica de grande escala e o sensoriamento remoto. O modelo hidrológico distribuído de grande escala MGBIPH acoplado com o modelo hidrodinâmico IPH-ECO foi utilizado para simular a bacia hidrográfica e os principais componentes hidrodinâmicos da Lagoa Mirim. O modelo mostrou bom desempenho quando comparado com observações de vazões, além de dados provenientes de sensoriamento remoto, através de altimetria espacial. As simulações mostraram importantes aspectos sobre a estrutura de fluxo, campos de velocidade e níveis d’água na lagoa, assim como a influência de grandes rios, forçantes externas como o vento (intensidade e direção) e o impacto do estressor antrópico (retiradas para irrigação) no sistema. As simulações permitiram avaliar aspectos relacionados com as variações espaciais e temporais (diurna, mensal, sazonal e inter-anual) da temperatura da superfície da água, a dinâmica dos fluxos de calor (sensível e latente) e os efeitos de eventos meteorológicos de pequena escala como frentes frias, os quais têm um impacto significativo sobre a temperatura superficial da água e os fluxos de calor na lagoa. Quanto aos modelos empíricos para estimativa de clorofila-a a partir do MODIS, os resultados mostram que um simples e eficiente modelo desenvolvido a partir de análise de regressão múltipla, apresentou ligeiras vantagens sobre os modelos de redes neurais artificiais, modelos multiplicativos não paramétricos e modelos empíricos (e.g., Appel, Kahru, FAI e O14a) usualmente utilizados na estimativa de Chl-a em ambientes aquáticos. Resultados também indicam que é inapropriado generalizar um único modelo desenvolvido a partir do conjunto total de dados, para estimar concentrações de Chl-a na lagoa, o que corrobora a heterogeneidade espacial na distribuição de Chl-a e as diferenças entre regiões (litoral e pelágica). A modelagem hidrológica-hidrodinâmica de grande escala apoiada por informação de sensoriamento remoto, mostrou ser uma abordagem promissora para o entendimento da estrutura e funcionamento de lagoas rasas de grande porte e longo prazo, úteis para a gestão integrada dos recursos hídricos. / The last decade, the water resource management is being complex due to the rapid socioeconomic development and environmental changes in river basins. Computations models are important support tools in water resource management and make decision providing important information and allowing a better comprehension of the physical, chemical and biologic processes, which occur in di erent temporal/spatial scales. In this thesis, the objective was to understand the hydrological functioning of the integrated basin- lake system and its e ects on hydrodynamics, using hydrodynamic - hydrodynamic modeling and water quality monitoring (e.g., chlorophyll-a, water surface temperature and water levels) from remote sensing techniques. The study area is the Lake Mirim basin, located between Brazil and Uruguay (basin total area 58.000 km2). Empirical models were proposed and tested to chlorophyll-a estimation in a shallow subtropical lake, based on MODIS imagery and statistics techniques. In addition, we developed and assessed the coupling of large scale hydrological/hydrodynamic modeling and remote sensing techniques. The large-scale distributed hydrological model MGB-IPH coupled with the hydrodynamic model IPHECO were used to simulate the river basin and the hydrodynamic components of the Lake Mirim. The coupled model showed good performance when compared to in-situ measurements and satellite altimetry data. The simulations showed important aspects relate to flow structure, velocity fields and lake water levels, as well as the influence of large rivers, external forcing as such the wind (intensity and direction), and the impact of anthropogenic stressors (irrigation withdrawals) in the system. The simulations allowed assessing the spatial and temporal variations (diurnal, monthly, seasonal and inter-annual) in the water surface temperature, heat fluxes dynamics (sensible and latent) and the e ects of short time-scale events, as such cold fronts passages over the lake, which cause strong impacts on the water surface temperature and heat fluxes in the lake. Regarding the empirical models developed to chlorophyll-a estimation from MODIS imagery, the results showed that a simple and e cient model developed from multiple regression analysis, performed best in comparison with artificial neural network models, non-parametric multiplicative models, and empirical models (e.g., Appel, Kahru, FAI and O14a) common used in the Chl-a estimation in aquatics environments. Results also indicated that is inappropriate to generalize a single model developed from the total datasets to estimates Chl-a in the lake, which corroborates the spatial heterogeneity (Chl-a distribution) and the di erences among regions (littoral and pelagic). The synergy between large-scale hydrological-hydrodynamic modeling, in situ measurements and remote sensing techniques provided a promising approach to improve the comprehension of the structure and ecosystem functioning of large shallow lakes in long-term time scale, useful to water resources management.
298

Pareamento bacia-lagoa usando modelagem hidrológica-hidrodinâmica e sensoriamento remoto

Munar Samboní, Andrés Mauricio January 2017 (has links)
A gestão de recursos hídricos tornou-se cada vez mais complexa devido ao rápido crescimento sócio-econômico e as mudanças ambientais nas bacias hidrográficas nas últimas décadas. Modelos computacionais são importantes ferramentas de suporte na gestão de recursos hídricos e tomada de decisões devido a sua funcionalidade, provendo informações importantes sobre os principais processos físicos, químicos e biológicos, e permitindo melhorar o entendimento desses processos, os quais ocorrem em diferentes escalas espaciais e temporais. Na presente tese, o objetivo foi compreender o funcionamento hidrológico do sistema integrado bacia hidrográfica - lagoa, e os efeitos na hidrodinâmica do lago, utilizando como suporte o acoplamento da modelagem hidrológica - hidrodinâmica, e o uso de técnicas de sensoriamento remoto para o monitoramento de parâmetros de qualidade da água (e.g., clorofilaa, temperatura da superfície d’água e níveis da água). A área de estudo é a bacia hidrográfica da Lagoa Mirim, localizada no sul do Brasil, possuindo uma área total de 58.000 km2 (56% no Uruguai e o restante no Brasil). Foram propostos e testados modelos empíricos para estimativa de clorofila-a emumlago raso subtropical, baseados em imagens do sensor MODIS e técnicas estatísticas. Além disso, foi desenvolvido e avaliado o acoplamento da modelagem hidrológica-hidrodinâmica de grande escala e o sensoriamento remoto. O modelo hidrológico distribuído de grande escala MGBIPH acoplado com o modelo hidrodinâmico IPH-ECO foi utilizado para simular a bacia hidrográfica e os principais componentes hidrodinâmicos da Lagoa Mirim. O modelo mostrou bom desempenho quando comparado com observações de vazões, além de dados provenientes de sensoriamento remoto, através de altimetria espacial. As simulações mostraram importantes aspectos sobre a estrutura de fluxo, campos de velocidade e níveis d’água na lagoa, assim como a influência de grandes rios, forçantes externas como o vento (intensidade e direção) e o impacto do estressor antrópico (retiradas para irrigação) no sistema. As simulações permitiram avaliar aspectos relacionados com as variações espaciais e temporais (diurna, mensal, sazonal e inter-anual) da temperatura da superfície da água, a dinâmica dos fluxos de calor (sensível e latente) e os efeitos de eventos meteorológicos de pequena escala como frentes frias, os quais têm um impacto significativo sobre a temperatura superficial da água e os fluxos de calor na lagoa. Quanto aos modelos empíricos para estimativa de clorofila-a a partir do MODIS, os resultados mostram que um simples e eficiente modelo desenvolvido a partir de análise de regressão múltipla, apresentou ligeiras vantagens sobre os modelos de redes neurais artificiais, modelos multiplicativos não paramétricos e modelos empíricos (e.g., Appel, Kahru, FAI e O14a) usualmente utilizados na estimativa de Chl-a em ambientes aquáticos. Resultados também indicam que é inapropriado generalizar um único modelo desenvolvido a partir do conjunto total de dados, para estimar concentrações de Chl-a na lagoa, o que corrobora a heterogeneidade espacial na distribuição de Chl-a e as diferenças entre regiões (litoral e pelágica). A modelagem hidrológica-hidrodinâmica de grande escala apoiada por informação de sensoriamento remoto, mostrou ser uma abordagem promissora para o entendimento da estrutura e funcionamento de lagoas rasas de grande porte e longo prazo, úteis para a gestão integrada dos recursos hídricos. / The last decade, the water resource management is being complex due to the rapid socioeconomic development and environmental changes in river basins. Computations models are important support tools in water resource management and make decision providing important information and allowing a better comprehension of the physical, chemical and biologic processes, which occur in di erent temporal/spatial scales. In this thesis, the objective was to understand the hydrological functioning of the integrated basin- lake system and its e ects on hydrodynamics, using hydrodynamic - hydrodynamic modeling and water quality monitoring (e.g., chlorophyll-a, water surface temperature and water levels) from remote sensing techniques. The study area is the Lake Mirim basin, located between Brazil and Uruguay (basin total area 58.000 km2). Empirical models were proposed and tested to chlorophyll-a estimation in a shallow subtropical lake, based on MODIS imagery and statistics techniques. In addition, we developed and assessed the coupling of large scale hydrological/hydrodynamic modeling and remote sensing techniques. The large-scale distributed hydrological model MGB-IPH coupled with the hydrodynamic model IPHECO were used to simulate the river basin and the hydrodynamic components of the Lake Mirim. The coupled model showed good performance when compared to in-situ measurements and satellite altimetry data. The simulations showed important aspects relate to flow structure, velocity fields and lake water levels, as well as the influence of large rivers, external forcing as such the wind (intensity and direction), and the impact of anthropogenic stressors (irrigation withdrawals) in the system. The simulations allowed assessing the spatial and temporal variations (diurnal, monthly, seasonal and inter-annual) in the water surface temperature, heat fluxes dynamics (sensible and latent) and the e ects of short time-scale events, as such cold fronts passages over the lake, which cause strong impacts on the water surface temperature and heat fluxes in the lake. Regarding the empirical models developed to chlorophyll-a estimation from MODIS imagery, the results showed that a simple and e cient model developed from multiple regression analysis, performed best in comparison with artificial neural network models, non-parametric multiplicative models, and empirical models (e.g., Appel, Kahru, FAI and O14a) common used in the Chl-a estimation in aquatics environments. Results also indicated that is inappropriate to generalize a single model developed from the total datasets to estimates Chl-a in the lake, which corroborates the spatial heterogeneity (Chl-a distribution) and the di erences among regions (littoral and pelagic). The synergy between large-scale hydrological-hydrodynamic modeling, in situ measurements and remote sensing techniques provided a promising approach to improve the comprehension of the structure and ecosystem functioning of large shallow lakes in long-term time scale, useful to water resources management.
299

Estimation of Root Zone Soil Hydraulic Properties by Inversion of a Crop Model using Ground or Microwave Remote Sensing Observations

Sreelash, K January 2014 (has links) (PDF)
Good estimates of soil hydraulic parameters and their distribution in a catchment is essential for crop and hydrological models. Measurements of soil properties by experimental methods are expensive and often time consuming, and in order to account for spatial variability of these parameters in the catchment, it becomes necessary to conduct large number of measurements. Estimation of soil parameters by inverse modelling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise for heterogeneous layered soils. Although extensive soil data is becoming more and more available at various scales in the form of digital soil maps there is still a large gap between this available information and the input parameters needed for hydrological models. Inverse modeling has been extensively used but the spatial variability of the parameters and insufficient data sets restrict its applicability at the catchment scale. Use of remote sensed soil moisture data to estimate soil properties using the inverse modeling approach received attention in recent years but yielded only an estimate of the surface soil properties. However, in multilayered and heterogeneous soil systems the estimation of soil properties of different layers yielded poor results due to uncertainties in simulating root zone soil moisture from remote sensed surface soil moisture. Surface soil properties can be estimated by inverse approach using surface soil moisture data retrieved from remote sensing data. Since soil moisture retrieved from remote sensing is representative of the top 5 cm only, inversion of models using surface soil moisture cannot give good estimates of soil properties of deeper layers. Crop variables like biomass and leaf area index are sensitive to the deeper layer soil properties. The main focus of this study is to develop a methodology of estimation of root zone soil hydraulic properties in heterogeneous soils by crop model based inversion techniques. Further the usefulness of the radar soil moisture and leaf area index in retrieving soil hydraulic properties using the develop approach is be tested in different soil and crop combinations. A brief introduction about the soil hydraulic properties and their importance in agro-hydrological model is discussed in Chapter 1. Soil water retention parameters are explained in detail in this chapter. A detailed review of the literature is presented in chapter 2 to establish the state of art on the following: (i) estimation of soil hydraulic properties, (ii) role of crop models in estimating soil hydraulic properties, (iii) retrieval of surface soil moisture using water cloud model from SAR data, (iv) retrieval of leaf area index from SAR (synthetic aperture radar) data and (v) modeling of root zone soil moisture and potential recharge. The thesis proposes a methodology for estimating the root zone soil hydraulic properties viz. field capacity, wilting point and soil thickness. To test the methodology developed in this thesis for estimating the soil hydraulic properties and their uncertainty, three synthetic experiments were conducted by inversion of STICS (Simulateur mulTIdiscplinaire pour les Cultures Standard) model for maize crop using the GLUE (Generalized Likelihood Uncertainty Estimation) approach. The estimability of soil hydraulic properties in a layer-wise heterogeneous soil was examined with several sets of likelihood combinations, using leaf area index, surface soil moisture and above ground biomass. The robustness of the approach is tested with parameter estimation (model inversion) in two different meteorological conditions. The details of the numerical experiments and the several likelihood and meteorological cases examined are given in Chapter 3. The likelihood combination of leaf area index and surface soil moisture provided consistently good estimates of soil hydraulic properties for all soil types and different meteorological cases. Relatively wet year provided better estimates of soil hydraulic properties as compared with a dry year. To validate the approach of estimating root zone soil properties and to test the applicability of the approach in several crops and soil types, field measurements were carried out in the Berambadi experimental watershed located in the Kabini river basin in south India. The profile soil measurements were made for every 10 cm upto 1 m depth. Maize, Marigold, Sunflower, Sorghum and Turmeric crops were monitored during the four year period from 2010 to 2013. Crop growth parameters viz. leaf area index, above ground biomass, yield, phenological stages and crop management activities were measured/monitored at 10 day frequency for all the five crops in the study area. The details of the field experiments performed, the data collected and the results of the model inversion using the ground measured data are given in Chapter 4. The likelihood combination of leaf area index and surface soil moisture provided consistently lower root mean square error (1.45 to 2.63 g/g) and uncertainty in the estimation of soil hydraulic properties for all soil crop and meteorological cases. The uncertainty in the estimation of soil hydraulic properties was lower in the likelihood combination of leaf area index and soil moisture. Estimability of depth of root zone showed sensitivity to the rooting depth. Estimating root zone soil properties at field plot scale using SAR data (incidence angle 24o, wave length 5.3 GHz) of RADARSAT-2 is presented in the Chapter 5. In the first step, an approach of estimating leaf area index from radar vegetation index using the parametric growth curve of leaf area index and the retrieval of soil moisture using water cloud model are given in Chapter 5. The parameters of the growth curve and the leaf area index are generated using a time series of RADARSAT-2 for two years 2010-2011 and 2011-12 for the crops (maize, marigold, sunflower, sorghum and turmeric) considered in this study. The surface soil moisture is retrieved using the water cloud model, which is calibrated using the ground measured values of leaf area index and surface soil moisture for different soils and crops in the study area. The calibration and validation of LAI and water cloud models are discussed in this Chapter. Eventually, the retrieved leaf area index and surface soil moisture from RADARSAT-2 data were used to estimate the soil hydraulic properties and their uncertainty in a similar manner as discussed in Chapter 4 for various crop and soil plots and the results are presented in Chapter 5. The mean and uncertainty in the estimation of soil hydraulic properties using inversion of remote sensing data provided results similar to the estimates from inversion of ground data. The estimates of soil hydraulic properties compared well (R2 of 0.7 to 0.80 and RMSE of 2.1 to 3.16 g/g) with the physically measured vales of the parameters. In Chapter 6, root zone soil moisture and potential recharge are modelled using the STICS model and the soil hydraulic parameters estimated using the RADARSAT-2 data. The potential recharge is highly sensitive to the water holding capacity of rooting zone. Variability in the root zone soil moisture for wet and dry years for different soil types on irrigated and non-irrigated crops were investigated. Potential recharge from different crop and soil types were compared. The uncertainty in the estimation of potential recharge due to uncertainty in the estimation of field capacity is quantified. The root zone soil moisture modeled by STICS showed good agreement with the measured root zone soil moisture in all crop and soil cases. This was tested for both dry and wet year and provides similar results. The temporal variability of root zone soil moisture was also modeled well by the STICS model; the model also predicted well the intra-soil variability of soil moisture of root zone. The results of the modeling of root zone soil moisture and potential recharge are presented in Chapter 6. At the end, in Chapter 7, the major conclusions drawn from the various chapters are summarized.
300

Soil Moisture Modelling, Retrieval From Microwave Remote Sensing And Assimilation In A Tropical Watershed

Sat Kumar, * 05 1900 (has links) (PDF)
The knowledge of soil moisture is of pronounced importance in various applications e.g. flood control, agricultural production and effective water resources management. These applications require the knowledge of spatial and temporal variation of the soil moisture in the watershed. There are three approaches of estimating/measuring soil moisture namely,(i) in-situ measurements,(ii) remote sensing, and(iii) hydrological modelling. The in situ techniques of measurement provide relatively accurate information at point scale but are not feasible to gather in large numbers relevant for a watershed. The soil moisture can be simulated by hydrological models at the desired spatial and temporal resolution, but these simulations would often be affected by the uncertainties in the model physics, parameters, forcing, initial and boundary conditions. The remote sensing provides an alternative to retrieve the soil moisture of the surface (top few centimeters ) layer, but even this data is limited by the spatial or temporal resolution, which is satellite dependant. Hydrological models could be improved by assimilating remotely sensed soil moisture, which requires a retrieval algorithm. In order to develop a retrieval algorithm the satellite data need to be calibrated/validated with the in-situ ground measurements. The retrieval of surface soil moisture from microwave remote sensing is sensitive to surface conditions, and hence requires calibration/validation specific to a site/region. The improvement in the hydrological variables/fluxes is sensitive to the framework adopted during the assimilation of remotely sensed data. The main focus of the study was to assess the retrieval algorithm for the surface soil moisture from both active (ENVISAT,RADARSAT-2)and passive(AMSR-E) microwave satellites in a semi-arid tropical watershed of South India. Further, the usefulness of these retrieved remotely sensed products for the estimation of recharge was investigated by developing a coupled hydrological model and an assimilation framework. A brief introduction was made in Chapter 1 on the importance of surface soil moisture and evapotranspiration in hydrology, and the feasible options available for the retrieval from microwave remote sensing. A detailed review of the literature is presented in Chapter 2 to establish the state-of-the-art on the following:(i) retrieval algorithms for the surface soil moisture from active and passive microwave remote sensing,(ii) estimation of actual evapotranspiration from optical remote sensing(MODIS),(iii) coupled surface-ground water hydrological models,(iv) estimation of soil hydraulic properties with their uncertainties, and(v) assimilation framework specific to hydrological modelling. To calibrate/validate the retrieval algorithms and to test the coupled model and the assimilation framework developed, field measurements were carried out in the BerambadI experimental watershed located in the Kabini river basin. The surface soil moisture in 50 field plots, profile soil moisture up to 1m depth in 20 field plots, and ground water level in 200 bore wells were measured. Twelve images of ENVISAT, seven teen images of RADARSAT-2, along with AMSR-E and MODIS data were used. These data pertained to different durations during the period 2008 to 2011,the details of which are given in Chapter 3. The approach for the retrieval of surface soil moisture and the associated uncertainty from active and passive microwave remote sensing is given in Chapter 4. Surface soil moisture was retrieved for six vegetation classes using the linear regression model and copulas. Three types of copulas(Clayton, Frank and Gumbel) were investigated. It was found that the ensemble mean simulated using the linear regression model and three copulas was nearly same. The copulas were found to be superior than the linear regression model when comparing the distributions of the mean of the generated ensemble. Among the copulas it was observed that the Clayton copula performed better in the lower and middle ranges of backscatter coefficient, while the Gumbel and Frank copulas were found to be superior in the upper ranges of backscatter coefficients. The range of RMSE was approximatively 4cm3cm−3 indicating that the retrieval from ENVISAT/RADARSAT-2 was good. ACDF based approach was proposed to retrieve the surface soil moisture map for the watershed with a spatial resolution of 100m x 100m ( i.e one hectare). The map of the uncertainty in the retrieved surface soil moisture was also prepared using the Clayton copula. The AMSR-E surface soil moisture product was calibrated for the watershed during the period 2008 to 2011, using the map generated from the ENVISAT/RADARSAT data. They Clayton copula was used to generate the ensemble of the corrected AMSR-E surface soil moisture. The standard deviation of the generated ensemble varied from 0.01 to 0.03cm3cm−3 ,hence the derived surface soil moisture product for Berambadi was found to be good. In the Chapter 5, a one dimensional soil moisture model was developed based on the numerical solution of the Richards’ equation using finite difference method and inverse modeling was carried out using the Generalized Likelihood Uncertainty Estimation(GLUE) approach for estimating the soil hydraulic parameters of the van Genuchten(VG) model and their uncertainty. The parameters were estimated from the two field sites(Berambadi and Wailapally watershed in South India) and from laboratory evaporation experiment for the Wailapally site. It was found that the GLUE approach was able to provide good uncertainty bounds for the soil hydraulic parameters. The uncertainty in the estimates from the field experiment was found to be higher than from the laboratory evaporation experiment for both water retention and hydraulic conductivity curves. The saturated soil moisture(θs )and shape parameter (n) of VG model estimated from the laboratory evaporation and field experiment were found to be the same, and further more they showed a lower uncertainty from both the experiments. Moreover, the residual soil moisture (θr), inverse of capillary fringe thickness (α) and saturated hydraulic conductivity( KS) showed a relatively higher uncertainty. In the Berambadi watershed ,the inverse modeling was performed in three bare field plots, and it was found that field plots which had higher θs showed a relatively higher actual evapotranspiration (AET) and lower potential recharge. In Chapter 6, the retrieval of profile soil moisture up to 2m by assimilation of surface soil moisture was investigated by performing synthetic experiments on six soil types. The measured surface soil moisture over top 5cm depth was assimilated into the one dimensional soil moisture model to retrieve the profile soil moisture. Even though the assimilation of surface soil moisture helped in improving the profile soil moisture for the six soil types, the bias was observed. To reduce the bias, pseudo observations of profile soil moisture were generated and used in addition to the surface soil moisture in the assimilation altogether. These pseudo observations were generated using the linear relationship existing between the surface and profile soil moisture. A significant bias reduction was found to be feasible by using this method when pseudo observations beyond 75cm depth were used then there was no significant improvement. A coupled surface-ground water model was developed, which had 5 layers for the vadose zone and one layer for the ground water zone, in order to consider the major hydrological processes from ground surface to ground water table in a semi-arid watershed. The details of the coupled model were described in Chapter 7. The major aim of this model was to be able to use remotely sensed data of surface soil moisture and evapotranspiration to simulate recharge. The model was tested by applying in a lumped framework to the field data set in the Berambadi watershed for the year 2010 to 2011. The performance of the model was evaluated with the measured watershed average root zone soil moisture and ground water levels. The watershed average root zone soil moisture was obtained by averaging the field measurements from 20 plots and average ground water level was obtained by averaging the field measurement from 200 bore wells. In order to assimilate the AET into the coupled model, the daily AET at a spatial resolution of 1km was estimated from MODIS data. The AET was validated in one forested and four agricultural sites in the watershed. The validation was based on the comparison with AET simulated from water balance models. For agricultural plots the STICS (crop model) and for the forested site the COMFORT (hydrological) model were used. The AET from the MODIS showed a reasonably good match with both the forested and agricultural plots at the annual scale (for the crop model approximately 4-5 months). Model simulations were carried out with and without assimilating the remotely sensed data and the performance was evaluated. It was found that the assimilation helped in capturing the trends in deeper layer soil moisture and groundwater level. At the end, in Chapter 8 the major conclusions drawn from the various chapters are summarized.

Page generated in 0.0421 seconds