Spelling suggestions: "subject:"hydrophone"" "subject:"hydrophones""
31 |
An experimental investigation and design of a digital telemetry acoustic receiving arrayMorgan, Ira James 30 September 2011 (has links)
Acoustic Receiving Line Arrays are critical tools for measuring the acoustic properties of any oceanographic region. Vertical, horizontal, and combinations of the two array configurations allow us to measure acoustic propagation, bottom characteristics through inversion, and ambient noise. These properties are vitally important for effective implementation of any passive or active detection system in both shallow and deep water environments. Measurement systems must be designed with flexibility since the exact array design that yields the best signal processing results is not known prior to a survey. Flexibility, in this case, refers to large numbers of hydrophones, higher sample rates for greater bandwidth, and longer recording time to facilitate experimentation at each survey site. Repeated deployment and recovery of such a system demands a battery powered autonomous design that can be deployed and recovered from available research vessels at sea. Conventional deep ocean analog array cable designs, while power efficient, become physically challenging in size and weight when the sensor count exceeds 100 and array lengths remain in the 100s of meters. The purpose of this thesis is to detail the design, development, and testing of a pressure tolerant full ocean depth rated prototype acoustic line array with digital telemetry of all hydrophone data from the sensors to the recording system. The design is to support up to 300 hydrophones each with a maximum sample rate of 4 kHz and a per sensor power requirement of ¾ of a watt. Lower sensor counts will allow higher sample rates to be used based on available telemetry bandwidth. A single element of a line array was built and tested at the University of Texas at Austin Applied Research Laboratories and it was used to demonstrate real-time telemetry and recording of acoustic hydrophone data. / text
|
32 |
Inertial Cavitation with Confocal Ultrasound for Drug Delivery / Cavitation inertielle avec un dispositif ultrasonore confocal pour la délivrance de droguesFowler, Robert Andrew 27 January 2014 (has links)
Il a été montré que la cavitation acoustique pouvait se révéler utile dans l'administration de médicaments pour de nombreuses applications biologiques et médicales. Cette thèse commence par une présentation de la cavitation ultrasonore et des mécanismes d'action mis en jeu pour la délivrance de médicaments. A la fin de ce cette synthèse, un dispositif à deux transducteurs ultrasonores disposés de manière confocale est présenté pour résoudre certains des problèmes actuels dans le domaine. Il est ensuite mis en oeuvre dans différentes études de faisabilité. La thèse est organisée en 5 chapitres : 1. L'utilisation de la cavitation acoustique dans un contexte biomédical est présentée ici dans une revue générale. Ce chapitre comprend l'état de l'art pour la génération de cavitation, les techniques expérimentales qui sont actuellement mises en oeuvre pour la mesure de la cavitation, et les approches cliniques et précliniques pour l'utilisation de la cavitation in vivo pour différents types de tissu biologique. 2. Le dispositif ultrasonore utilisé pour toutes les études de cette thèse est ensuite décrit. Il est caractérisé acoustiquement et comparé avec un simple transducteur dans le but de démontrer son efficacité pour la génération de la cavitation. Cette comparaison est d'abord faite par une quantification chimique du niveau de cavitation. A puissance constante, le dispositif à deux transducteurs confocaux est bien plus efficace pour générer de la cavitation. Les causes de cette observation, notamment la réduction de la propagation non-linéaire et la stabilisation du nuage des bulles par les forces Bjerknes, sont ensuite étudiées par des mesures acoustiques, des simulations de pression en régime linéaire et un suivi par une caméra ultra rapide des nuages de bulles induits. 3. Le prototype confocal est utilisé in vivo sur des tumeurs sous cutanées en conjonction avec des liposomes. Dans un premier temps, des essais sous IRM démontrent la possibilité de larguer le contenu des liposomes localement par la cavitation inertielle délivrée par le dispositif. Une seconde étude avec une formulation liposomale de doxorubicine a permis de démontrer l'amélioration de la réponse thérapeutique de la chimiothérapie après application de la cavitation inertielle.. 4. Une étude de faisabilité de l'interférence de l'ARN (RNAi) sur un petit nombre d'animaux est réalisée avec le dispositif confocal et des molécules de siRNA encapsulées dans des liposomes Les expériences sont conduites in vivo avec une xénogreffe de tumeur de sein humain. Après une phase de réglage des paramètres ultrasonores pour limiter la toxicité du traitement, on observe une inhibition significative du gène ciblé. 5. Une deuxième étude de faisabilité est réalisée pour étudier la potentialisation de la chimiothérapie avec l'évérolimus dans un modèle de chondrosarcome de rat. Les traitements ultrasonores et les chimiothérapies sont répétés. Sur un petit nombre d'animaux, on montre l'innocuité du traitement ultrasonore, et l'efficacité en conjonction avec l'agent anti tumoraux, évérolimus / Acoustic cavitation has been shown to be a useful tool in drug delivery for many different biological tissues and indications, and this thesis aims to contribute to the knowledge of cavitation from a drug delivery perspective. This thesis seeks to synthesize the current knowledge and practice concerning acoustic cavitation in a biomedical context, and to present a high intensity confocal ultrasound (US) prototype to address some of the current problems in the field and to give a proof of concept for the therapeutic efficacy of such a prototype. The thesis is organized in 5 chapters: 1. The use of acoustic cavitation in a biomedical context is presented here in a general review. This review comprises the state of the art for cavitation generation, experimental techniques currently being implemented for the measurement of cavitation, and the clinical and preclinical approaches to the use of cavitation in vivo on a tissue by tissue basis. 2. The high intensity confocal US prototype used for all studies in this thesis is presented here. It is characterized in terms of the advantages it gives for the generation of cavitation. Enhancement of cavitation is first demonstrated chemometrically with a fluorescent dosimeter compared to a single transducer at the ultrasonic focus. The mechanisms for cavitation enhancement are then investigated with acoustic measurements, linear pressure simulations, and high speed camera data. 3. The confocal US prototype in used in conjunction with a liposomal formulation of doxorubicin is performed in which a therapeutic enhancement of tumor inhibition is presented. The mechanism of this enhancement is investigated with liposomally encapsulated lanthanide contrast agents and magnetic resonance imaging. 4. A small scale proof of concept for the use of RNA interference using the confocal prototype, and liposomally encapsulated siRNA molecules. The experiments are performed In vivo with a xenograft of human breast tumor. This study also includes data for the safety of the US exposure on a mouse treated one time. 5. Another small scale proof of concept of the use of the confocal device on potentiating chemotherapy with the drug everolimus in a rat chondrosarcoma model. The studies presented here also investigate the use of multiple US exposures on the same tumor in a combined drug / US treatment regimen
|
33 |
Estimation of geoacoustic properties in the South China Sea shelf using a towed source and vertical line hydrophone arrayMarburger, John M. 12 1900 (has links)
Approved for public release, distribution is unlimited / Linear sound sweeps from a towed J15-3 sound source were collected at a moored VLA hydrophone array in the South China Sea during the ASIAEX experiment in May 2001. Measured signals were filtered and pulse compressed. The processed data showed a high signal to noise ratio. Given an a priori chirp sonar survey, a two layer bottom "first guess" model was constructed. A broadband coupled-mode model was used to perform an exhaustive frequency variant sensitivity study of VLA pressures to changes in bottom properties as a basis for the geoacoustic inverse problem. Study results provided information on the observability of the various geoacoustic parameters and a procedure for the inversion. Matched field processing of the VLA data, using the same coupledmode model, was then performed to calculate ambiguity diagrams from which geoacoustic parameter estimates were obtained. Since VLA pressure fields were not sensitive to changes in the sediment attenuation coefficient, a matched field technique that correlated the slope of modeled transmission loss to the negative slope of 10log of the observed energy was performed in order to obtain estimates of the attenuation. These estimates showed a frequency dependent attenuation coefficient in the 50-600Hz frequency band. / Lieutenant, United States Navy
|
34 |
Hidrofone ultrassônico com piezoeletreto como elemento transdutor / Ultrasonic hydrophone with piezoelectret as transducer elementMedeiros, Leandro José de 14 March 2014 (has links)
Desde o ano 2000, o Grupo de Alta Tensão e Materiais (GATM) tem contribuído com suas pesquisas no desenvolvimento de processos para produção de novos transdutores piezoelétricos de materiais poliméricos, baseados na tecnologia dos piezoeletretos. Essa intensa investigação se justifica pelas excelentes propriedades piezoelétricas desses dispositivos, com atividade na ordem de centenas e até milhares de pC/N, ultrapassando o desempenho de algumas tradicionais cerâmicas. Destacam-se também nestes sensores, sua estrutura flexível e robusta, sua resposta na faixa de frequências ultrassônicas e seu baixo custo. Características estas que os tornam muito competitivos com os transdutores convencionais, cerâmicos e poliméricos, a exemplo do PZT e PVDF, respectivamente. Neste contexto, desenvolveu-se em 2009 no GATM um novo arranjo polimérico de múltiplos canais, em que filmes de teflon FEP foram termicamente moldados e depois expostos a um intenso campo elétrico (na ordem de kV), criando sensores com elevado coeficiente piezoelétrico. Esse novo dispositivo, batizado de Piezoeletreto de Canais Tubulares (PCT) foi construído por meio de um processo de fabricação organizado e controlado, diferentemente dos piezoeletretos vistos até então. No presente trabalho construiu-se um protótipo de hidrofone com elemento ativo dado por um filme de PCT, para aplicações de até 100 kHz e com uma eletrônica de pré-amplificação em 24 dB. O primeiro teste com o protótipo restringiu-se à obtenção da sua sensibilidade. Realizaram-se ainda testes de caracterização quanto ao padrão de diretividade e a relação sinal-ruído. A calibração foi feita em três diferentes modalidades de geração do sinal: AM, CW e Burst, todas de maneira comparativa com o auxílio de um hidrofone comercial. A sensibilidade média encontrada nas medidas foi de 0,142 mV/Pa (-196,93 dB re 1 V/μPa) e, na ressonância (40 kHz) de 1,698 mV/Pa (-175,4 dB re 1 V/μPa). A segunda fase de testes destinou-se a geração de imagens para diagnóstico clínico, baseada na técnica de Vibroacustografia (VA). Verificou- se a viabilidade do uso da VA com o mapeamento de dois objetos distintos, uma pequena esfera metálica de 1 mm de diâmetro e uma estrutura óssea. / Since 2000, the High-Voltage and Materials Group (GATM) has focused its research on developing new processes for manufacture piezoelectric transducers, from polymeric materials based on the piezoelectret technology. This intense research is justified by the excellent electromechanical properties of these devices, with piezoelectric coefficient in the order of hundreds up to thousands of pC/N, exceeding the performance of the most traditional ceramics. Other highlights of these sensors are the flexible and robust structure, its wide range response in ultrasonic frequencies and low cost. These characteristics make them very competitive with those conventional ceramic and polymeric transducers, such as the PZT and PVDF, respectively. In this context, in 2009 a new polymeric multiple film arrangement was laminated to create an open channel structure that after been exposed to an intense electric field (on the order of kV), produces a piezoelectric sensor with high piezoelectricity. This new device was built by an organized and controlled process, unlike the piezoelectrets seen so far. The main features inherent to tubular channels piezoelectret are the constructive uniformity, control of the resonance frequency and greater thermal stability, when compared to other piezoelectric polymers. Based on these tubular piezoelectrets, in the current study, a prototype of a 24dB preamplifier ultrasonic hydrophone was built. The first test with the prototype restricted to obtaining its sensitivity. Further tests were performed to characterize the pattern of directivity and signal-to-noise ratio. The calibration tests were conducted on three different approaches to signal generation AM, CW and Burst; all in a comparative manner with the aid of a calibration standard hydrophone. The results showed a transducer with average sensitivity of 0.142 mV/Pa (-196.93 dB re 1 V/μPa), and the resonance region at 40 kHz with a sensitivity of 1,698 mV/Pa (-175.4 dB re 1 V/μPa) and a unidirectional sensitive region. The feasibility of producing images by VA has been verified by mapping two distinct objects, a small metal sphere of 1 mm diameter and a bone structure.
|
35 |
Hidrofone ultrassônico com piezoeletreto como elemento transdutor / Ultrasonic hydrophone with piezoelectret as transducer elementLeandro José de Medeiros 14 March 2014 (has links)
Desde o ano 2000, o Grupo de Alta Tensão e Materiais (GATM) tem contribuído com suas pesquisas no desenvolvimento de processos para produção de novos transdutores piezoelétricos de materiais poliméricos, baseados na tecnologia dos piezoeletretos. Essa intensa investigação se justifica pelas excelentes propriedades piezoelétricas desses dispositivos, com atividade na ordem de centenas e até milhares de pC/N, ultrapassando o desempenho de algumas tradicionais cerâmicas. Destacam-se também nestes sensores, sua estrutura flexível e robusta, sua resposta na faixa de frequências ultrassônicas e seu baixo custo. Características estas que os tornam muito competitivos com os transdutores convencionais, cerâmicos e poliméricos, a exemplo do PZT e PVDF, respectivamente. Neste contexto, desenvolveu-se em 2009 no GATM um novo arranjo polimérico de múltiplos canais, em que filmes de teflon FEP foram termicamente moldados e depois expostos a um intenso campo elétrico (na ordem de kV), criando sensores com elevado coeficiente piezoelétrico. Esse novo dispositivo, batizado de Piezoeletreto de Canais Tubulares (PCT) foi construído por meio de um processo de fabricação organizado e controlado, diferentemente dos piezoeletretos vistos até então. No presente trabalho construiu-se um protótipo de hidrofone com elemento ativo dado por um filme de PCT, para aplicações de até 100 kHz e com uma eletrônica de pré-amplificação em 24 dB. O primeiro teste com o protótipo restringiu-se à obtenção da sua sensibilidade. Realizaram-se ainda testes de caracterização quanto ao padrão de diretividade e a relação sinal-ruído. A calibração foi feita em três diferentes modalidades de geração do sinal: AM, CW e Burst, todas de maneira comparativa com o auxílio de um hidrofone comercial. A sensibilidade média encontrada nas medidas foi de 0,142 mV/Pa (-196,93 dB re 1 V/μPa) e, na ressonância (40 kHz) de 1,698 mV/Pa (-175,4 dB re 1 V/μPa). A segunda fase de testes destinou-se a geração de imagens para diagnóstico clínico, baseada na técnica de Vibroacustografia (VA). Verificou- se a viabilidade do uso da VA com o mapeamento de dois objetos distintos, uma pequena esfera metálica de 1 mm de diâmetro e uma estrutura óssea. / Since 2000, the High-Voltage and Materials Group (GATM) has focused its research on developing new processes for manufacture piezoelectric transducers, from polymeric materials based on the piezoelectret technology. This intense research is justified by the excellent electromechanical properties of these devices, with piezoelectric coefficient in the order of hundreds up to thousands of pC/N, exceeding the performance of the most traditional ceramics. Other highlights of these sensors are the flexible and robust structure, its wide range response in ultrasonic frequencies and low cost. These characteristics make them very competitive with those conventional ceramic and polymeric transducers, such as the PZT and PVDF, respectively. In this context, in 2009 a new polymeric multiple film arrangement was laminated to create an open channel structure that after been exposed to an intense electric field (on the order of kV), produces a piezoelectric sensor with high piezoelectricity. This new device was built by an organized and controlled process, unlike the piezoelectrets seen so far. The main features inherent to tubular channels piezoelectret are the constructive uniformity, control of the resonance frequency and greater thermal stability, when compared to other piezoelectric polymers. Based on these tubular piezoelectrets, in the current study, a prototype of a 24dB preamplifier ultrasonic hydrophone was built. The first test with the prototype restricted to obtaining its sensitivity. Further tests were performed to characterize the pattern of directivity and signal-to-noise ratio. The calibration tests were conducted on three different approaches to signal generation AM, CW and Burst; all in a comparative manner with the aid of a calibration standard hydrophone. The results showed a transducer with average sensitivity of 0.142 mV/Pa (-196.93 dB re 1 V/μPa), and the resonance region at 40 kHz with a sensitivity of 1,698 mV/Pa (-175.4 dB re 1 V/μPa) and a unidirectional sensitive region. The feasibility of producing images by VA has been verified by mapping two distinct objects, a small metal sphere of 1 mm diameter and a bone structure.
|
36 |
Mapping Tampa Bay <em>Cynoscion nebulosus</em> Spawning Habitat Using Passive Acoustic SurveysWalters, Sarah Lyle 19 October 2005 (has links)
Spotted seatrout, Cynoscion nebulosus, spawning locations as well as associated environmental variables were determined for Tampa Bay, Florida during the 2004 spawning season using a mobile hydrophone survey. Hydrophones, a type of underwater microphone, can be used to detect and record spawning sounds of soniferous fishes. During their spawning season in Tampa Bay which generally occurs between March and September, mature male spotted seatrout generate sounds associated with courtship in the crepuscular and evening periods by vibrating sonic muscles against the swim bladder. Active spawning sites can be located using hydrophones to find these calling males.
Using a random stratified sampling method, 760 stations within Tampa Bay (46 % of the sampling universe) were sampled over the 2004 spawning season. Only 8% of sampled stations had large aggregations of spotted seatrout. Spawning, determined by the sound produced by large aggregations, was detected throughout the bay except for Hillsborough Bay and was most common in the lower bay and eastern region of the middle bay. Presence of submerged aquatic vegetation (SAV), proximity to shoreline, as well as high dissolved oxygen values and shallow depth were positively correlated with spawning areas. Courtship calls of sand seatrout, Cynoscion arenarius, and silver perch, Bairdiella chrysoura were also detected during the survey as they share an overlapping spawning season with spotted seatrout. Aggregations of all three species rarely occurred simultaneously. Sand seatrout and silver perch used different habitats within Tampa Bay to spawn and spawned with a much greater frequency than spotted seatrout. Courtship calls of spotted seatrout were analyzed both by ear and by received sound level to determine if signal processing could be used to assess courtship sound recordings. However, there was no clear relationship between the two methods.
|
37 |
Understanding the Role of Sonochemical and Sono-electrochemical Parameters in Semiconductor CleaningBalachandran, Rajesh January 2015 (has links)
Over the years, megasonic energy has been widely used in the semiconductor industry for effective particle removal from surfaces after chemical mechanical planarization (CMP) processes. As a sound wave propagates through a liquid medium, it generates two effects, namely, acoustic streaming and acoustic cavitation. Acoustic streaming refers to time independent motion of liquid due to viscous attenuation, while cavitation arises from the bubble activity generated due to the difference in the pressure field of the propagating wave. Cavitation can be classified into two categories, (1) stable and (2) transient cavitation. When a bubble undergoes continuous oscillations over repeated cycles it is known to exhibit stable cavitation, while a sudden collapse is referred to as transient cavitation. Due to the rapid implosion of the transient cavity, drastic conditions of temperature (5,000-10,000 K) and pressure (hundreds of bars) are generated within and surrounding the bubble. If this phenomenon occurs close to the substrate, it causes damage to the sub-micron features. In this study, emphasis has been laid on understanding acoustic cavitation as it is critical to achieving high cleaning efficiency without any feature damage. The research work described in this dissertation has been divided into three sections. In the first part of the dissertation, the development of a novel sono-electrochemical technique for removal of sub-micron (300 nm) silica particles from conductive surfaces (Ta) has been discussed. The technique employs megasonic field at low pulse time and duty cycle in conjunction with an applied electrical field for achieving superior particle removal efficiency (PRE). In order to demonstrate the effectiveness of the sono-electrochemical technique, cleaning studies were conducted using 300 nm silica particles both in the presence and absence of an applied electrical field in air and argon saturated solutions. In the presence of the megasonic field (0.5 W/cm², 10% duty cycle, 5ms pulse time) alone, about 55% PRE was observed in Ar saturated DI water, while in the presence of the sono-electrochemical field (-1.5V vs Ag/AgCl (sat. KCl)), about 80% PRE was measured. The enhancement in particle removal efficiency was attributed to oscillating hydrogen bubbles formed from water reduction in close vicinity of the tantalum surface, that grow to a resonant size under suitable acoustic conditions and likely cause removal of particles. Interestingly, increasing the applied potential to -2V (vs Ag/AgCl (sat. KCl)) enhanced the particle removal efficiency to about 100%. Investigations were also performed in solutions containing 10 mM potassium chloride (KCl). The results revealed that even at low applied potentials of -1.5V, almost complete particle removal was achieved. This improvement in PRE was attributed to a combined effect of microstreaming and electro-acoustic forces. The results revealed that almost complete removal of particles could be achieved at low power density and duty cycle when a sound field at 1 MHz is used in conjunction with electrochemistry. The second study focuses on the effect of acoustic frequency and transducer power density for the development of a damage-free megasonic cleaning process. Here, an effort was made to characterize cavitation activity at acoustic frequencies of 1, 2 and 3 MHz by means of electrochemical, acoustic emission and fluorescence spectroscopy techniques. Studies conducted with a microelectrode using ferricyanide as an electroactive species showed that at 1 MHz and 2 W/cm², current peaks with a rise and fall time of about 30-50 ms and 80-120 ms were observed, respectively, which were indicative of transient cavitation behavior. Interestingly at higher frequencies (3 MHz), symmetric and oscillatory behavior in the current was observed. The rise and fall times were about 3 orders of magnitude lower at about 50 µs. This oscillatory behavior in the current at 3 MHz was attributed to the presence of stable cavities. Furthermore, hydrophone studies supported the microelectrode studies as they showed a reduction of about two orders of magnitude in the intensity of transient cavitation as frequency was increased from 1 to 3 MHz. Hydroxyl radical (OH*) capture measurements using terephthalate dosimetry corroborated the above results as they illustrated an order of magnitude decrease in OH* generation rate at 3 MHz compared to 1 MHz. These studies suggest that the use of higher megasonic frequencies may be more suitable for damage-free and effective cleaning of patterned surfaces in the semiconductor industry. In the last part of the dissertation, we investigate the effect of solution parameters on cavitation characteristics using a bicarbonate based alkaline chemical cleaning formulation that has been previously demonstrated to be beneficial in achieving effective megasonic cleaning and low damage. The results of this study revealed that in the presence of ammonia (NH₃) or carbonate/bicarbonate ions at concentrations greater than 75 mM or 200 mM respectively, the measured rate of generation of hydroxyl radicals at 1 MHz and 2 W/cm² was significantly reduced. The lower rate of OH· was attributed to scavenging of radicals in these solutions and additionally due to reduced transient cavitation in ammonia solutions. Hydroxyl radical measurements at higher power density of 8 W/cm² showed that carbonate ions were better scavengers of hydroxyl radicals than bicarbonate ions. The study on the effect of bulk solution temperature illustrated that the rate of generation of OH· increased with increase in temperature from 10 to 30 °C suggesting enhanced transient cavitation at higher temperatures (in the investigated range). The use of optimum concentration of ammonia or carbonates ions in cleaning formulation and bulk solution temperature would likely provide desired cleaning with minimum damage.
|
38 |
Development of a Phased Array Focused Ultrasound Transducer for Two-photon Microscopy Guided Neural StudiesShaffaf, Leila 27 November 2013 (has links)
Focused ultrasound combined with intravenously injected microbubbles is a promising non-invasive therapy capable of temporarily disrupting the blood-brain barrier for targeted drug delivery. Established in vivo experiments on rodent models combine focused ultrasound treatment with two-photon microscopy imaging to improve understanding of microvasculature response. A phased array, an advanced ultrasound therapy device, was successfully developed to improve pressure transmission in these experiments. An investigation of transducer sensitivity to setup equipment suggested modifications to setup procedures, for example recording objective position, may improve in situ pressure estimates. A ring array composed of 50 lateral mode elements, geometry determined by pressure field simulations, was successfully fabricated. Fibre optic hydrophone pressure field measurements confirmed the device had an appropriate focal size (0.7mm diameter x 4mm axial length) and reached therapeutic pressure levels (>0.5MPa). Ex vivo transcranial measurements demonstrated moderate focal correction and off-axis steering capabilities that may improve experimental throughput and target alignment.
|
39 |
Development of a Phased Array Focused Ultrasound Transducer for Two-photon Microscopy Guided Neural StudiesShaffaf, Leila 27 November 2013 (has links)
Focused ultrasound combined with intravenously injected microbubbles is a promising non-invasive therapy capable of temporarily disrupting the blood-brain barrier for targeted drug delivery. Established in vivo experiments on rodent models combine focused ultrasound treatment with two-photon microscopy imaging to improve understanding of microvasculature response. A phased array, an advanced ultrasound therapy device, was successfully developed to improve pressure transmission in these experiments. An investigation of transducer sensitivity to setup equipment suggested modifications to setup procedures, for example recording objective position, may improve in situ pressure estimates. A ring array composed of 50 lateral mode elements, geometry determined by pressure field simulations, was successfully fabricated. Fibre optic hydrophone pressure field measurements confirmed the device had an appropriate focal size (0.7mm diameter x 4mm axial length) and reached therapeutic pressure levels (>0.5MPa). Ex vivo transcranial measurements demonstrated moderate focal correction and off-axis steering capabilities that may improve experimental throughput and target alignment.
|
40 |
Měření parametrů ultrazvukového svazku / Measurement of ultrasonic beam parametersHlavatý, Radek January 2021 (has links)
The work deals with methods of measuring the parameters of the ultrasonic beam generated by piezoelectric sensors. The theoretical part contains a literature search of methods for the analysis of the ultrasonic beam generated by piezoelectric transducers with dimensions of units of millimeters. The problematics of measurement using piezoelectric or optical fiber hydrophones is investigated in more detail. The scope of the practical part of the work is the design and implementation of measuring equipment that allows spatial analysis of the beam during propagation by a complicated signal path, for automotive level and concentration sensors of the company Vitesco Technologies s.r.o. The system uses a hydrophone method to measure the ultrasonic beam. Due to test measurements, the repeatability of the measured results is confirmed, the results are discussed in the end.
|
Page generated in 0.0767 seconds