Spelling suggestions: "subject:"hydrothermal fluid"" "subject:"bydrothermal fluid""
1 |
Modelling and analytical studies of magmatic-hydrothermal processesKlyukin, Yury Igorevich 08 December 2017 (has links)
Hydrothermal processes play a major role in transporting mass and energy in Earth’s crust. These processes rely on hydrothermal fluid, which is dissolving, transporting and precipitating minerals and distribute heat. The composition of the hydrothermal fluid is specific for various geological settings, but in most cases it can be approximated by H₂O-NaCl-CO₂ fluid composition. The flow of hydrothermal fluid is controlled by differences in temperature, pressure and/or density of the fluid and hydraulic conductivity of the rock. In my work, I was focused on modeling of the hydrothermal fluid properties and experimental characterization of fluid that formed emerald deposit in North Carolina, USA. The dissertation based on the result of three separate projects.
The first project has been dedicated to characterization of the H₂O-NaCl hydrothermal fluid ability to transport mass and energy. This ability of the fluid is defined by a change in fluid density and enthalpy in response to changing pressure or temperature. In this project we quantified the derivatives of mass, enthalpy and SiO₂ solubility in wide range of pressure, temperature and composition (PTx) of H₂O-NaCl fluid. Our study indicated that the PT region in which fluid is most efficiently can transport mass and energy, located in the critical region near liquid-vapor phase boundary and the sensitivity to changing pressure-temperature conditions decrease with increasing salinity.
In second project we developed the revised H₂O-NaCl viscosity model. Revised model to calculate the viscosity of H₂O-NaCl reproduces experimental data with ±10% precision in PTx range where experimental data available and follows expected trends outside of the range. This model is valid over the temperature range from the H₂O solidus (~0 °C) to ~1,000 °C, from ~0.1 MPa to ≤500 MPa, and for salinities from 0-100 wt.% NaCl.
The third project has been focused on the characterization of formation conditions of the emerald at North American Emerald Mine, Hiddenite, North Carolina, USA. The emerald formation conditions defined as 120-220 MPa, 450-625 °C using stable isotope, Raman spectrometry, and fluid inclusion analysis. Hydrothermal fluid had a composition of CO2-H2O±CH4, which indicates mildly reducing environment of emerald growth. / Ph. D.
|
2 |
Rôle du CO2 dans les transferts des métaux d'intérêt économique par les fluides géologiques / Role of CO² in the transfer of economic metals by geological fluidsKokh, Maria 22 January 2016 (has links)
Le CO2 est le deuxième après l'eau constituant des fluides de haute température (T) et haute pression (P) qui opèrent dans la lithosphère, transportent la matière et forment des dépôts économiques des métaux. Cependant, son effet sur la mobilisation et la précipitation des métaux reste quasiment inconnu faute de données directes et de modèles physico-chimiques. Dans ce travail de thèse, nous avons mis en œuvre des méthodes expérimentales et des analyses chimiques et spectroscopiques sur des fluides modèles riches en CO2, couplées à une modélisation thermodynamique, afin de quantifier, pour la première fois de manière systématique, la solubilité, le partage et la spéciation de divers métaux d'intérêt économique (Fe, Cu, Au, Mo, Pt, Sn, Zn) dans les systèmes eau-gaz-sels typiques des fluides hydrothermaux métallifères. Des mesures de solubilité des principaux minéraux de ces métaux (sulfures, oxydes et métaux natifs) et de leurs coefficients de partage ont été effectuées dans des fluides supercritiques H2O-CO2-S-KCl à 450°C et 500-700 bar et dans des systèmes liquide-vapeur H2O-CO2-S-KCl-NaCl à 350°C, 130-300 bar, à l'aide d'autoclaves à cellule flexible et de réacteurs à séparation de phase que nous avons mis au point. Les conditions d'acidité, de redox et de fugacité de soufre ont été contrôlées par des équilibres entre les minéraux sulfures et oxydes de fer et alkali-aluminosilicates ou entre le sulfate et le sulfure en solution. Les données ont été analysées dans le cadre d'un modèle thermodynamique couplé à une révision critique des données sur la spéciation des métaux en phase fluide. Ce modèle électrostatique ne requière pas de paramètres ajustables; il utilise la constante diélectrique du solvant H2O-CO2 et le paramètre de Born des espèces dominantes en phase aqueuse. Nos résultats montrent que la mobilité des métaux dans les fluides riches en CO2 est contrôlée par la nature et la charge de leurs complexes principaux. La présence du CO2 favorise la stabilité des complexes neutres (FeCl20, AuHS0, CuHS0, ZnCl20, KMoO40, Pt(HS)20) alors que celle des espèces chargées de ces métaux (FeCl42-, Au(HS)2-, CuCl2-, ZnCl42-, HMoO4-, PtCl3-) est considérablement affaiblie. Il en résulte un fractionnement important de certains métaux selon la composition du fluide et le contexte géologique. Notre modèle explique bien l'enrichissement en Fe et l'appauvrissement en Cu des gisements métamorphiques d'or (orogéniques) formés par des fluides riches en CO2. Le transport de l'or par ces fluides est favorisé à faible teneur en soufre (Au(HS)0 est dominante), alors que dans les fluides riches en soufre, typiques des gisements porphyres cuprifères où les complexes chargés sont dominants (Au(HS)2-, Au(HS)S3-), la présence du CO2 aura pour effet d'abaisser la solubilité de l'or. Cependant, même à fortes teneurs en CO2 (>50 wt%), la capacité des fluides à transporter l'or sous forme d'espèces neutres (~100s ppb) reste comparable à celle d'un fluide aqueux, ce qui explique les associations de minéralisations aurifères avec des fluides riches en CO2. L'effet du CO2 sur la mobilité de Mo, Zn et Si qui forment des espèces neutres, est faible dans la plupart des contextes géologiques, alors que celle de Sn pourrait être favorisée par des complexes carbonatés et celle de Pt par des complexes carbonyles (CO). Le rôle direct du CO2 sur le partage liquide-vapeur pour la plupart des métaux est relativement faible devant celui du soufre réduit (H2S) dont la présence favorise fortement l'enrichissement de la phase vapeur en Au, Pt, Mo et Cu. Ainsi le CO2 intervient dans ces processus de démixtion de manière indirecte, en élargissant le domaine T-P d'immiscibilité du fluide. Cette étude démontre que, contrairement aux modèles métallogéniques actuels, la présence du CO2 peut favoriser la mobilité de certains métaux et engendrer des fractionnements importants entre différents métaux lors de l'évolution des fluides dans la croûte terrestre. / Carbon dioxide is the second component after water of geological fluids that operate at high temperature (T) and pressure (P) in the lithosphere, transport the metals and form economic deposits. However, its effect on the mobilization and precipitation of metals remains virtually unknown owing to a lack of direct data and physical-chemical models. In this thesis, we have developped experimental methods and chemical and spectroscopic analyzes of CO2-rich fluids, coupled with thermodynamic modeling, to systematically quantify, for the first time, the solubility, distribution and speciation of various metals of economic interest (Fe, Cu, Au, Mo, Pt, Sn, Zn) in gas-water-salt systems typical of metalliferous hydrothermal fluids. Measurements of the solubility of the major minerals of these metals (sulfides, oxides and native metals) and of metal partition coefficients were carried out in supercritical fluids H2O-CO2-S-KCl at 450°C and 500-700 bar and in two-phase vapor-liquid systems H2O-CO2-NaCl-KCl-S at 350°C, 130-300 bar, using flexible-cell and phase-separation reactors that we have set up. The conditions of acidity, redox potential and sulfur fugacity were controlled by equilibria among iron sulfide and oxide minerals and alkali-aluminosilicate minerals or between sulfate and sulfide in the fluid. The data obtained were analyzed in the framework of a thermodynamic model coupled with a critical review of the literature on the metal speciation in the fluid phase. The electrostatic model that we used does not require any adjustable parameters; it is based on the dielectric constant of the CO2-H2O solvent and the Born parameter of the dominant species in the aqueous phase. Our results show that the mobility of metals in CO2-rich fluids is controlled by the nature and electrical charge of their main aqueous complexes. The presence of CO2 favors the stability of the neutral complexes (FeCl20, AuHS0, CuHS0, ZnCl20, KMoO40, Pt(HS)20) whereas that of the charged species of these metals (FeCl42-, Au(HS)2-, CuCl2-, ZnCl42-, HMoO4-, PtCl3-) is largely weakened. This results is significant fractionations between some metals, depending on the composition of the fluid and the geological context. Our model accounts for the enrichment in Fe and depletion in Cu observed in metamorphic orogenic gold deposits formed by CO2-rich fluids. The transport of gold by these fluids is favored at low sulfur content (Au(HS)0 is dominant), whereas in S-rich fluids typical of porphyry copper deposits and high T orogenic gold deposits where the charged complexes are dominant (Au(HS)2-, Au(HS)S3-), the presence of CO2 leads to lowering the solubility of gold. However, even at high CO2 content (> 50 wt%), the ability of fluids to carry gold as neutral species (~100s ppb) remains comparable to that of an aqueous fluid, which explains the associations of gold mineralizations with fluids rich in CO2. The effect of CO2 on the mobility of Mo, Zn and Si, which form neutral species, is weak in most geological situations, whereas that of Sn could be promoted by carbonate complexes and that of Pt by carbonyl (CO) complexing. The direct role of CO2 in the vapor-liquid partitioning of most metals is relatively small compared to that of reduced sulfur (H2S) whose presence strongly favors the enrichment of the vapor by Au, Pt, Mo and Cu. Thus, the main impact of CO2 in these demixing processes is to expand the fluid T-P domain of immiscibility. This study demonstrates that, contrary to common belief, the presence of CO2 can promote the mobility of certain metals and cause significant fractionations between different metals during the evolution of fluids in the crust.
|
3 |
Minéralisations et circulations péri-granitiques : modélisation numérique couplée 2D/3D, applications au district minier de Tighza (Maroc-Central) / Peri-granitic circulations and mineralization : 2D/3D coupled numerical modeling, applications in the mining district of Tighza (Central Morocco)Eldursi, Khalifa 29 May 2009 (has links)
L’hydrodynamique et la probabilité de minéralisation (R²AI) autour des intrusions magmatiques ont été étudiées par modélisation numérique couplant transfert de chaleur et circulation de fluide. L’objectif principal de ce travail est de tester la nature du lien génétique entre l’intrusion et le processus de minéralisation. La première série de résultats s’appuie sur une comparaison avec des exemples naturels de gisements bien connus : i) L’hydrodynamique et la localisation des zones probables de minéralisation sont fortement dépendantes de la profondeur de mise en place du pluton. Au-dessus de 4.5km de profondeur de mise en place, le seuil de perméabilité de 10-16 m² est atteint et les cellules convectives peuvent créer des zones de décharge additionnelles où des minéralisations peuvent avoir lieu ; ii) Pour toutes les profondeurs d’emplacement, la zone en dessous du pluton n'est pas favorable à la précipitation minérale ; iii) Les apophyses focalisent les fluides convectifs et les zones de minéralisation autour d’elles ; iv) La phase de refroidissement n'est pas la phase majeure de convection. La zone advective principale et celle de haute favorabilité peuvent se produire avant et pendant la phase la plus chaude d’emplacement, avant que le magma ne cristallise complètement; v) Les détachements sont capables de fortement modifier et de re-localiser les flux convectifs déclenchés par une intrusion syn-tectonique; vi) Les conditions physiques favorables à la minéraliser sont produites pendant une durée courte autour de la phase la plus chaude de l'intrusion. Même si les arguments chimiques sont absents, la circulation de fluide (induite par la mise en place de magma) joue un rôle principal dans la genèse des gisements d'or associés aux intrusions. De plus, la formation de ce type de gisement est favorisée par l'occurrence d'une auréole thermique fracturée autour de l'intrusion. La seconde série de résultats concerne l’étude du cas naturel de la minéralisation W-Au de Tighza (Jebel Aouam) au Maroc Central. Une campagne d’acquisition de données gravimétriques, l’inversion données et l’utilisation de logiciel 3D, ont permis d’obtenir la géométrie 3D complexe du pluton de Tighza. Les résultats sont les suivants : i) la zone probable de la minéralisation apparaît au début de la mise en place du magma dans la zone perméable (veine W1) et s'étend pour remplir W1 et couvrir la région autour du pluton pendant la phase la plus chaude de mise en place; ii) lors du refroidissement, la zone probable est réduite et limitée à la zone perméable (W1) pendant 0,6 Ma; iii) L’application de la température de fermeture isotopique de la muscovite et de la biotite avec la distribution du R²AI montre que les âges de refroidissement entre la minéralisation au niveau de la veine W1 et l'intrusion ne sont pas séparés de plus de 0,10 Ma. Ceci est confirmé par la datation absolue de la minéralisation de Tighza et permet de discuter la fiabilité des âges obtenus pour la minéralisation dans la veine W1. / Coupled hydro-thermal numerical modeling has been used to simulate the hydrothermal fluid flow regime and the mineralization probability (R²AI) around plutons. The main objective behind this work is to test the nature of the genetic link between mineralization and intrusions. The first series of results comes from comparison with well-constrained mineral deposits: i) Fluid circulation and mineralization patterns are strongly dependent of the emplacement depth of the pluton. Deep seated plutons emplaced below 10 km do not induce an advective heat dissipation. For emplacement depth less than 4.5 km, the permeability threshold of 10-16 m2 is reached and second order convection cells may create additional discharge zones where mineralization are expected; ii) For all emplacement depths, the pluton floor zone is not favorable for mineral deposition; iii) The apexes strongly modified the fluid flow patterns by focusing convective fluids and mineralization zones around them; iv) The cooling phase is not the main phase of convection for large pluton often associated with long-lived magma emplacement. Major advective heat dissipation and mineral deposition zone may also occur sometime before and during the hottest phase of emplacement; v) Extensional detachments faults are able to delocalize and strongly modify classical fluid flow patterns induced by coeval intrusion; vi) Favorable physical conditions for mineral deposition are encountered around middle crust pluton, during a short time span bracketing the hottest phase of intrusion. We conclude that, even if chemical arguments are absent, fluid circulation induced by granite emplacement plays a key role in the genesis of granite-related Au deposits. Moreover, formation of this type of deposit is promoted and controlled by the occurrence of a fractured thermal aureole around the intrusion. The second series of results deals with the W-Au granite related Tighza deposits (Jebel Aouam, Morocco). Based on gravimetric data, inversion, and 3D modeling software, we were able to construct the most probable complex geometry of the Tighza pluton. The 3D geometries of the pluton and major fractures (W1 vein) were injected in the hydro-thermal modeling procedure. The results are: i) the probable zone of mineralization appears at the beginning of magma emplacement within the permeable zone (W1 vein) and extends to fill up W1 and covers the area around pluton at the hottest phase; ii) During the cooling phase, the story was reversed; the probable zone was reduced and restricted in the permeable zone (W1) during 0.6 Myr of cooling; iii) Application of isotopic closure temperature of muscovite and biotite coupled with R²AI distribution shows that the cooling ages between mineralization in W1 veins and the intrusion are not separated by more than 0.10 Myr. This is confirmed by the absolute dating obtained for Tighza Au mineralization and allows discussing the significance of older ages obtained for the mineralization in W1 veins.
|
4 |
Sr behaviour during hydrothermal alteration of oceanic gabbros exposed at Hess Deep : implications for 87SR/86SR compositions as a proxy for fluid-rock interaction.Kirchner, Timo 26 May 2011 (has links)
Mid-ocean ridge hydrothermal systems are known to extend to deep levels of the oceanic crust, including the plutonic section, but little is known about the timing and nature of fluid-rock interactions at these levels. To investigate the temporal and spatial characteristics of hydrothermal alteration in the lower crust, this study investigates a suite of hydrothermally altered (<5 to >20% hydrous alteration) gabbroic rocks recovered from the Hess Deep Rift, where 1.2 Ma fast-spreading East Pacific Rise crust is well-exposed. These samples were altered to amphibole-dominated assemblages with chlorite-rich samples occurring in a restricted region of the field area. Hornfels, indicative of reheated, previously altered rocks, are clustered in the central part of the field area. The entire sample suite has elevated 87Sr/86Sr (mean: 0.70257±0.00007 (2σ), n=16) with respect to fresh rock (0.7024). Bulk rock 87Sr/86Sr is strongly correlated with percentage of hydrous alteration and weakly correlated with bulk rock Sr content. The distribution of Sr in igneous and metamorphic minerals suggests that greenshist-facies alteration assemblages (chlorite, actinolitic amphibole, albitic plagioclase) lose Sr to the fluid while amphibolite-facies secondary assemblages (secondary hornblende, anorthitic plagioclase) take up Sr. The temperature-dependent mobilization of Sr in hydrothermal systems has implications for the 87Sr/86Sr and ultimately fluid/rock ratio calculations based on the assessed 87Sr/86Sr systematics. Considering Sr behaviour, minimum fluid/rock ratios of ~1 were calculated for the plutonic section. Due to the large uncertainty regarding fluid Sr composition at depth and the sensitivity of fluid/rock ratio calculations on this parameter, a model combining the sheeted dike complex and the plutonic section to one hydrothermal system is introduced, yielding a fluid/rock ratio of 0.5. This value may be more realistic since the fluid composition entering and exiting the sheeted dike complex is better constrained.
The regional distribution of hornfelsed material with elevated 87Sr/86Sr suggests that fluid ingress into the upper plutonics at Hess Deep occurred on-axis in a dynamic interface of a vertically migrating axial magma chamber (AMC) and the base of the hydrothermal system. / Graduate
|
5 |
Elemental and S Isotope Geochemistry of Arsenian Pyrite from the Round Mountain Gold Deposit: Implications for S Sources and Hydrothermal Fluid EvolutionRuley, Alexander Andrew 21 December 2021 (has links)
No description available.
|
Page generated in 0.0856 seconds