Spelling suggestions: "subject:"hydrotreatment"" "subject:"hydrotreatments""
1 |
Kinetic modeling of the hydrotreatment of light cycle oil/dieselCastaneda-Lopez, Luis Carlos 15 May 2009 (has links)
A rigorous kinetic model of hydrodesulfurization (HDS) of complex mixtures such
as light cycle oil (LCO) or diesel has been developed. An experimental setup was
constructed to investigate the hydrotreatment of complex mixtures. The
hydrodesulfurization of LCO on a commercial CoMo/Al2O3 (IMP) catalyst was
investigated in a Robinson Mahoney perfectly mixed flow stationary basket reactor. An
experimental investigation of the HDS of the dibenzothiophene (DBT) and substituted
dibenzothiophenes in the LCO was carried out at temperatures between 290 and 330°C,
space time for dibenzothiophene (W/F0
DBT) between 1000 and 6500 kgcat-h/kmol, and
H2/HC molar ratio constant of 2.8. To avoid having to deal with a huge number of
parameters in the model, a methodology based on structural contributions was applied.
DENs and DENt are the denominators of the Hougen-Watson rate expressions for
hydrodesulfurization of dibenzothiophene (DBT) and methyl-substituted
dibenzothiophenes contained in the LCO. Both denominators comprise the concentration of all adsorbing species of the LCO multiplied by their adsorption equilibrium constants.
The estimation of the denominators DENs and DENt was performed using the
Levenberg-Marquardt algorithm and the results in terms of conversion for DBT,
biphenyl and cyclohexylbenzene obtained in the hydrodesulfurization of the LCO. The
evolution of DENs and DENt values with the composition was calculated for each LCO
experiment.
Structural contributions were taken from Vanrysselberghe and Froment for
hydrogenolysis and hydrogenation of methyl-substituted dibenzothiophenes with a
significant reduction in the number of parameters to be estimated in the HDS of the
LCO.
The multiplication factors, fsDBT, which are products of structural contributions for
hydrogenolysis and hydrogenation of the mono- and dimethyl-dibenzothiophenes were
also taken from Vanrysselberghe and Froment. These multiplication factors are based on
experimental results with model components such as DBT, 4-Methyl dibenzothiophene
and 4,6-Dimethyl dibenzothiophene.
The results obtained in the modeling are in good agreement with the experimental
data because the model reproduces very well the observed total conversions of DBT,
conversions of DBT into biphenyl and conversions of DBT into cyclohexylbenzene as a
function of temperature.
|
2 |
Middle distillate hydrotreatment zeolite catalysts containing Pt/Pd or NiMarin-Rosas, Celia 15 May 2009 (has links)
A study on middle distillate hydrotreatment zeolite catalysts containing Pt/Pd and/or
Ni was performed. The effect of the addition of the corresponding CoMo, CoMoPd,
CoMoPtPd and CoMoNi in PdNiPt-zeolite, Pt-zeolite, Ni-zeolite, and PdPt-zeolite was
studied. The catalysts were characterized physically and chemically by methods and
techniques such as Brunauer-Emmett-Teller (BET), Barret-Joyner-Hallenda (BJH), and
neutron activation analysis. The structures of the Ni and Pt containing zeolite were
studied by X-ray Photoelectron Spectroscopy (XPS).
An experimental apparatus was constructed to investigate the activity of the
experimental catalysts. The catalysts activity measured in terms of conversion of
dibenzothiophene (DBT), substituted dibenzothiophenes (sDBT) and phenanthrene as
well as molar-averaged conversion was evaluated in a continuous flow Robinson
Mahoney reactor with stationary basket in the hydrodesulfurization and hydrogenation
of heavy gas oil which contains sulphur refractory compounds such as 4-
methyldibenzotiophene (4-MDBT) and 4,6- dimethyldibenzothiophene (4,6-DMDBT).
DBT, 4-MDBT, 3-MDBT, 1-EDBT, 3-EDBT, 4,6-DMDBT, 3,6-DMDBT, 2,8-
DMDBT and 4-methylnaphtho[2,1-b]thiophene were selected to calculate the molaraveraged
conversion.
The conversions of the sulfur containing compounds and phenanthrene were
determined as a function of the operating variables: space time (W/Fo
DBT), temperature,
H2/HC mol ratio and pressure. The Conversions of DBT and 4,6-DMDBT into their reaction products such as Biphenyl (BPH), Cyclohexylbenzene (CHB), Bicyclohexyl
(BCH) and 3,4-Dimethylbiyphenyl (3,4-DMBPH) were determined only as a function of
space time in the interval of 4000-6000 kgcath/kmol.
The results of this work showed that Pt-HY and PdPt-HY are good noble metals
catalysts for the hydrodesulfurization of heavy gas oil. Moreover, this study showed that
CoMoPd/Pt-HY and CoMoNi/PdPt-HY catalysts are good candidates for deep HDS and
hydrogenation of heavy gas oil. It was found that the conversions of sulfur compounds
were higher than the conversions provided by the conventional CoMo/Al2O3 catalyst.
Also higher hydrogenation of phenanthrene was observed. Deactivation of the catalysts
was not observed during the operation.
Finally, the study not only contributed to define the technical bases for the
preparation of the noble metal catalysts for hydrodesulfurization of heavy gas oil at pilot
scale, but also provided technical information for developing the kinetic modeling of the
hydrodesulfurization of heavy gas oil with the noble metal catalysts.
|
3 |
Sonochemical and impregnated Co-W/γ-Al2O3 catalysts : performances and kinetic studies on hydrotreatment of light gas oilVishwakarma, Santosh Kumar 30 January 2007
γ-Al2O3 supported Co-W based catalysts with varying Co (1 - 3 wt %) and W (7 - 13 wt %) loadings were prepared using impregnation and sonochemical methods. All prepared catalysts were characterized with elemental analysis, BET analysis, X-ray diffraction (XRD), NH3 temperature programmed desorption (TPD), temperature programmed reduction (TPR) and thermogravimetry analysis (TGA). <p>The performances of all the synthesized catalysts were tested at a pressure of 8.9 MPa, LHSV of 2 h-1 and temperatures of 340, 350 and 360 °C in a laboratory trickle bed microreactor for hydrodesulphurization (HDS) and hydrodenitrogenation (HDN) of light gas oil (LGO) derived from Athabasca bitumen. The performance tests with impregnated catalysts indicated a maximum in activity for HDS and HDN reactions (sulfur and nitrogen conversions at 93.0 and 57.1 % at 360 °C) for Co(3 wt %)-W(10 wt %)/γ-Al2O3 whereas the performance tests with sonochemically prepared catalysts showed a maximum in activity (sulfur and nitrogen conversions at 87.9 and 42.5 % at 360 °C) for Co(3 wt %)-W(11.5 wt %)/ γ-Al2O3. These two catalysts were selected for detail performance, optimization and kinetic studies. The effects of reaction temperature (340 - 380 °C), pressure (7.6 - 10.3 MPa), liquid hourly space velocity (1.5 - 2.0 h-1) and hydrogen gas/gas oil ratio (400 - 800 mL/mL) were examined on HDS and HDN of LGO with these catalysts. The reaction kinetics for HDS was best fitted with a Power Law model whereas same for HDN was found to be best represented by a Langmuir-Hinshelwood model with a reasonable accuracy (0.90 <R2 <0.95). The activation energy for HDS of LGO were 14 and 12 kJ/mol for selected impregnated and sonochemically prepared catalysts whereas the same for HDN were 9 and 14 kJ/mol for these catalysts, respectively.
Calculation showed that the fitted HDS rate expressions were apparent and HDN rate expressions were intrinsic under existing reaction conditions. It also showed that the pore diffusion resistances for both HDS and HDN increased with an increase in reaction temperature from 340 to 380 °C.
|
4 |
Selective Removal of Non-basic Nitrogen Compounds from Heavy Gas Oil Using Functionalized Polymers2012 April 1900 (has links)
The inhibiting and deactivating effects of basic nitrogen species present in gas oils on catalyst active sites has been well recognized over the years; however, recent studies have shown comparable inhibiting and deactivating effects exhibited by non-basic nitrogen species. A novel pre-treatment technique employing the heterogeneously cross-linked macroporous polymer poly(glycidyl methacrylate) (PGMA) as the hydrophilic support coupled with organic compound tetranitrofluorenone has shown promising results for the selective elimination of non-basic nitrogen heterocyclic species from bitumen derived heavy gas oil (HGO). Characterization techniques such as Scanning electron microscopy (SEM), low temperature N2 adsorption–desorption (BET), CHNOS elemental analysis, fourier transform infrared spectroscopy (FT-IR), epoxy content titration, and thermo gravimetry/differential thermal analyzer (TG/DTA) were employed for determining the optimum parameters during each step of the polymer synthesis.
Step 1 comprised of direct polymerization of the monomers under the determined optimum conditions, with specific surface area of 34.7 m2/g and epoxy content of 5.8 wt% for the PGMA polymer support. Step 2 comprised of substitution of the epoxy ring with the acetone oxime functionality; FT-IR results indicated characteristics peaks at 1650 cm-1 which ascertained the presence of acetone oxime on the polymer, with epoxy content titration indicating a decrease of up to 33% of the epoxy content due to the substitution. Coupling of the organic compound tetranitrofluorenone with the polymer was performed in the final step, with TGA and DTG results indicating highest weight loss of approximately 126.9 μg, which signified that sample T had the greatest amount of organic compound present in comparison to the other samples (sample N to Sample S). The optimized polymer (sample T) was capable of removing nitrogen up to 6.7%, while having little to no influence on the sulphur or aromatic species. These results were in agreement with step 4 TGA analysis that showed sample T had the highest presence of the organic compound.
Reusability of the polymer multiple times with consistent removal is another known advantage of such a pre-treatment technique; hence reusability studies were performed, and showed that the polymer was indeed capable of multiple uses, with consistent removal of nitrogen compounds at approximately 6.5% from fresh heavy gas oil feedstocks.
Kinetic studies were performed as the final phase in order to evaluate the performance of the treated HGO in comparison to non-treated HGO. The effect of parameters such as temperature and LHSV were determined, with higher temperatures resulting in higher conversion of HDS and HDN. Similarly, as the LHSV was decreased, the conversions were increased for both HDS and HDN due to longer contact time between the feed and the catalyst. The highest obtained conversions were at an LHSV of 0.5 hr-1 and temperature of 395°C with treated HGO having HDS of 97.5% and HDN of 90.3%; while non-treated HGO having HDS of 94.9% and HDN of 78.3%. Employing the power law model, the results indicated that for treated HGO the reaction order for both HDS and HDN was 1.50; while for non-treated HGO the reaction order for HDS was 2.25 and for HDN was 2.00. The activation energies were then calculated with 141.4 kJ/mol being obtained for HDS and 113.8 kJ/mol for HDN for treated HGO; while for non-treated HGO the activation energy for HDS was 150.4 kJ/mol and for HDN was 121.4 kJ/mol.
It was observed that the conversion of both HDS and HDN were higher and the activation energies were lower for treated HGO, indicating that the removal of non-basic nitrogen species prior to hydrotreatment had a positive impact on catalyst performance and consequently the level of conversion.
|
5 |
Sonochemical and impregnated Co-W/γ-Al2O3 catalysts : performances and kinetic studies on hydrotreatment of light gas oilVishwakarma, Santosh Kumar 30 January 2007 (has links)
γ-Al2O3 supported Co-W based catalysts with varying Co (1 - 3 wt %) and W (7 - 13 wt %) loadings were prepared using impregnation and sonochemical methods. All prepared catalysts were characterized with elemental analysis, BET analysis, X-ray diffraction (XRD), NH3 temperature programmed desorption (TPD), temperature programmed reduction (TPR) and thermogravimetry analysis (TGA). <p>The performances of all the synthesized catalysts were tested at a pressure of 8.9 MPa, LHSV of 2 h-1 and temperatures of 340, 350 and 360 °C in a laboratory trickle bed microreactor for hydrodesulphurization (HDS) and hydrodenitrogenation (HDN) of light gas oil (LGO) derived from Athabasca bitumen. The performance tests with impregnated catalysts indicated a maximum in activity for HDS and HDN reactions (sulfur and nitrogen conversions at 93.0 and 57.1 % at 360 °C) for Co(3 wt %)-W(10 wt %)/γ-Al2O3 whereas the performance tests with sonochemically prepared catalysts showed a maximum in activity (sulfur and nitrogen conversions at 87.9 and 42.5 % at 360 °C) for Co(3 wt %)-W(11.5 wt %)/ γ-Al2O3. These two catalysts were selected for detail performance, optimization and kinetic studies. The effects of reaction temperature (340 - 380 °C), pressure (7.6 - 10.3 MPa), liquid hourly space velocity (1.5 - 2.0 h-1) and hydrogen gas/gas oil ratio (400 - 800 mL/mL) were examined on HDS and HDN of LGO with these catalysts. The reaction kinetics for HDS was best fitted with a Power Law model whereas same for HDN was found to be best represented by a Langmuir-Hinshelwood model with a reasonable accuracy (0.90 <R2 <0.95). The activation energy for HDS of LGO were 14 and 12 kJ/mol for selected impregnated and sonochemically prepared catalysts whereas the same for HDN were 9 and 14 kJ/mol for these catalysts, respectively.
Calculation showed that the fitted HDS rate expressions were apparent and HDN rate expressions were intrinsic under existing reaction conditions. It also showed that the pore diffusion resistances for both HDS and HDN increased with an increase in reaction temperature from 340 to 380 °C.
|
6 |
Biofuels from Corn Stover: Pyrolytic Production and Catalytic Upgrading StudiesCapunitan, Jewel Alviar 02 October 2013 (has links)
Due to security issues in energy supply and environmental concerns, renewable energy production from biomass becomes an increasingly important area of study. Thus, thermal conversion of biomass via pyrolysis and subsequent upgrading procedures were explored, in an attempt to convert an abundant agricultural residue, corn stover, into potential bio-fuels.
Pyrolysis of corn stover was carried out at 400, 500 and 600oC and at moderate pressure. Maximum bio-char yield of 37.3 wt.% and liquid product yield of 31.4 wt.% were obtained at 400oC while the gas yield was maximum at 600oC (21.2 wt.%). Bio-char characteristics (energy content, proximate and ultimate analyses) indicated its potential as alternative solid fuel. The bio-oil mainly consisted of phenolic compounds, with significant proportions of aromatic and aliphatic compounds. The gas product has energy content ranging from 10.1 to 21.7 MJ m-3, attributed to significant quantities of methane, hydrogen and carbon dioxide. Mass and energy conversion efficiencies indicated that majority of the mass and energy contained in the feedstock was transferred to the bio-char.
Fractional distillation of the bio-oil at atmospheric and reduced pressure yielded approximately 40-45 wt.% heavy distillate (180-250oC) with significantly reduced moisture and total acid number (TAN) and greater energy content. Aromatic compounds and oxygenated compounds were distributed in the light and middle fractions while phenolic compounds were concentrated in the heavy fraction.
Finally, hydrotreatment of the bio-oil and the heavy distillate using noble metal catalysts such as ruthenium and palladium on carbon support at 100 bar pressure, 4 hours reaction time and 200o or 300oC showed that ruthenium performed better at the higher temperature (300oC) and was more effective than palladium, giving about 25-26% deoxygenation. The hydrotreated product from the heavy distillate with ruthenium as catalyst at 300oC had the lowest oxygen content and exhibited better product properties (lower moisture, TAN, and highest heating value), and can be a potential feedstock for co-processing with crude oils in existing refineries. Major reactions involved were conversion of phenolics to aromatics and hydrogenation of ketones to alcohols. Results showed that pyrolysis of corn stover and product upgrading produced potentially valuable sources of fuel and chemical feedstock.
|
7 |
Improvement of the middle distillate yields during crude oil hydrotreatment in a trickle-bed reactorJarullah, Aysar Talib, Mujtaba, Iqbal, Wood, Alastair S. January 2011 (has links)
No / The growing demand for high-quality middle distillates is increasing worldwide, whereas the demand for low-value oil products, such as heavy oils and residues, is decreasing. Thus, maximizing the production of more liquid distillates of very high quality is of immediate interest to refiners. At the same time, environmental legislation has led to more strict specifications of petroleum derivatives. Hydrotreatment (HDT) of crude oil is one of the most challenging tasks in the petroleum refining industry, which has not been reported widely in the literature. In this work, crude oil was hydrotreated upon a commercial cobalt¿molybdenum on alumina (Co¿Mo/¿-Al2O3) catalyst presulfided at specified conditions. Detailed pilot-plant experiments were conducted in a continuous-flow isothermal trickle-bed reactor (TBR), and the main hydrotreating reactions were hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodeasphaltenization (HDAs), and hydrodemetallization (HDM), which includes hydrodevanadization (HDV) and hydrodenickelation (HDNi). The reaction temperature (T), the hydrogen pressure (P), and the liquid hourly space velocity (LHSV) were varied with certain ranges, with constant hydrogen to oil (H2/Oil) ratio. The effects of T, P, and LHSV on the conversion of sulfur, nitrogen, vanadium, nickel, and asphaltene were studied. The results showed that high T and P and low LHSV in HDS, HDN, HDV, HDNi, and HDAs of crude oil improve the sulfur (S), nitrogen (N), metals [vanadium (V) and nickel (Ni)], and asphaltene (Asph) conversion. The hydrotreated crude oil has been distilled into the following fractions: light naphtha (LN), heavy naphtha (HN), heavy kerosene (HK), light gas oil (LGO), and reduced crude residue (RCR), to compare the yield of these fractions produced by distillation after the HDT process to those produced by conventional methods (i.e., HDT of each fraction separately after the distillation). The yield of the middle distillate showed greater yield compared to the middle distillate produced by conventional methods. The properties of RCR produced using both methods are also discussed.
|
8 |
Detoxification of crude oilJarullah, A.T., Mujtaba, Iqbal, Wood, Alastair S. 22 December 2017 (has links)
No / Petroleum contributes significantly to our lives and will continue do so for many years to come. Petroleum derivatives supply more than 50% of the world's total supply of energy (Jarullah, 2011). Traditionally crude oil goes though fractional distillation to produce different grades of fuel such as gasoline, kerosene, diesel oil, etc. providing fuel for automobiles, tractors, trucks, aircraft, and ships. Catalytic hydrotreating (HDT) is used to detoxify the oil fractions produced by fractional distillation in the petroleum refining industries which involve removal of pollutants such as sulfur, nitrogen, metals, and asphaltene in trickle bed reactors. Recently Jarullah and co-workers proposed detoxification of whole crude oil a priori before the crude oil enters further processing in a fractionating column. This chapter highlights this new technology.
|
9 |
Catalysts and catalytic processes for the transformation of tars and other non-conventional feedstocks into fuels and chemicalsRaad, Zaher 03 December 2021 (has links)
[ES] Debido al agotamiento de las fuentes de petróleo, la mayor demanda de energía y combustibles para el transporte, y la necesidad de reducir las emisiones de gases de efecto invernadero y la dependencia de los recursos fósiles, la utilización de fuentes alternativas sostenibles para producir combustibles y productos químicos se vuelve esencial. En este contexto, la valorización de alquitranes ligeros (formados durante los procesos de refinación de petróleo y gasificación de biomasa) y otras fuentes no convencionales (es decir, ácidos grasos) y su conversión en productos químicos de alto valor agregado será una opción interesante y desafiante.
En este trabajo se desarrollan catalizadores sólidos y procesos catalíticos para la transformación de alquitranes ligeros mediante el proceso de hidrotratamiento suave. Este proceso está estudiado empleando diferentes hidrocarburos aromáticos policíclicos (HAP) como moléculas modelo, representativas de materias primas de alquitrán ligero. Los compuestos de tipo alquitrán de esta mezcla modelo se transforman en hidrocarburos C9-C15 parcialmente hidrogenados, que podrían aplicarse como aditivos (mejoradores) del combustible de aviación, o como productos químicos y disolventes para la industria.
Primero, se estudia el hidrotratamiento suave de alquitranes empleando Pd soportado sobre TiO2, que posee diferentes fases cristalinas. La actividad de hidrotratamiento y la selectividad hacia los productos hidrogenados deseados (es decir, tetralina y otros) aumentaron al aumentar tanto la acidez como el área superficial del catalizador, junto con la presencia de nanopartículas de Pd pequeñas y bien distribuidas. El catalizador Pd/TiO2 Nano revela una notable actividad de hidrotratamiento y estabilidad después de varios reusos sin prácticamente cambios en la estructura del TiO2. Además, no se observa prácticamente deposición de carbono, ni lixiviación de Pd, manteniéndose tanto el tamaño de partícula como la adecuada distribución del Pd, incluso después de la regeneración del catalizador. Además, el catalizador Pd/TiO2 Nano demuestra ser más eficaz para la producción de hidrocarburos C9-C15 que otros catalizadores de hidrotratamiento comerciales y reportados anteriormente.
Además, el Pd soportado en el óxido mixto TiO2-Al2O3 preparado mediante el método de co-precipitación optimizado, se evalúa en el hidrotratamiento suave de alquitranes, mostrando buena actividad y estabilidad después de varios reusos. Su actividad de hidrotratamiento se compara con la de los catalizadores Pd/TiO2 Nano y Pd/Al2O3; mientras que su ámbito de aplicación se extiende a otras reacciones de hidrogenación más exigentes, como la aminación reductora de acetol bioderivado. Además, un nuevo catalizador desarrollado con Pd soportado sobre TiO2/Al2O3 (precursor de Ti impregnado sobre alúmina como soporte) demuestra una buena actividad en el hidrotratamiento suave de compuestos de tipo alquitrán.
Finalmente, los catalizadores a base de Ni se preparan y prueban en el hidrotratamiento suave de alquitranes, siendo el catalizador Ni/TiO2/Al2O3 el más activo entre ellos. Además, los catalizadores de Ni muestran un excelente rendimiento catalítico cuando se aplican como catalizadores en la hidrogenación selectiva de ácidos grasos para producir hidrocarburos, catalizadores de Ni/TiO2/Al2O3 y Ni/TiO2/ZrO2, ofreciendo la más alta selectividad hacia n-heptadecano (C17). Curiosamente, se encuentra que el dopaje con Pt aumenta la actividad de los últimos catalizadores de Ni.
En resumen, diferentes catalizadores soportados por metales desarrollados en este estudio son capaces de transformar alquitranes ligeros y ácidos grasos en condiciones de reacción suaves, ofreciendo así una opción viable y más sostenible para la producción de hidrocarburos útiles de otras fuentes no convencionales. / [CA] Degut a l'esgotament dels depòsits petrolífers, hi hagut un increment de la demanda d'energia i de combustibles; al mateix temps que la necessitat de reduir les emissions de gasos GHG i la dependència als recursos fòssils; esdevé essencial la utilització de fonts d'energia alternativa per a produir combustibles líquids i productes químics. En aquest context, la valorització de quitrans lleugers (formats durant els processos de refinament del petroli i de gasificació de la biomassa) i d'altres fonts d'energia no convencionals com per exemple àcids grassos; i la seva conversió en productes químics d'alt valor afegit són una opció interessant i prometedora.
En aquest treball, es desenvoluparan catalitzadors sòlids i processos catalítics per a la transformació de quitrans lleugers a través del procés d'hidrotractament en condicions suaus. Aquest procés s'estudia utilitzant diferents hidrocarburs policíclics aromàtics (PAHs) com a molècules model representatives de la matèria prima que constitueixen els quitrans lleugers. Els quitrans d'aquesta mescla representativa es transformen a hidrocarburs C9-C15 parcialment hidrogenats que poden ser utilitzats com a querosè o com a productes químics i dissolvents per a la indústria.
Primer, l'hidrotractament en condicions suaus dels quitrans va ser estudiat utilitzant materials de Pd suportat sobre TiO2 de diferents fases cristal·lines. L'activitat de l'hidrotractament i la selectivitat del procés als productes hidrogenats desitjats (i.e tetralina i altres) augmenta en augmentar l'acidesa i l'àrea superficial del catalitzador, junt amb la presència de petites nanopartícules de Pd adequadament distribuïdes. El catalitzador Pd/TiO2 Nano presenta una destacada activitat en la reacció d'hidrotractament i resulta estable després de reutilitzar-lo en diverses ocasions sense pràcticament canvis en l'estructura TiO2, malgrat que té lloc certa sedimentació de carboni, no es detecta lixiviació i es manté tan la distribució com les dimensions de les partícules després de la regeneració del catalitzador. A més a més, el catalitzador Pd/TiO2 Nano resulta ésser més efectiu per a la producció d'hidrocarburs C9-C15 que altres catalitzadors comercials i d'altres descrits prèviament en la bibliografia.
A més a més, s'ha estudiat el Pd suportat en l'òxid mixt TiO2-Al2O3 preparat a través de l'optimització del mètode de la coprecipitació en la reacció d'hidrotractament de quitrans en condicions suaus. Aquest catalitzador mostra una bona activitat i estabilitat després de reutilitzar-lo en vàries ocasions. La seva activitat en dita reacció es compara a la que presenten els catalitzadors de Pd/TiO2 Nano i Pd/Al2O3; i també s'ha comprovat el seu abast en altres reaccions d'hidrogenació d'interès, com per exemple l'aminació reductiva d'acetol provinent de la biomassa. A més a més, s'ha desenvolupat un nou catalitzador de Pd suportat sobre TiO2/Al2O3 (on el precursor de Ti s'impregna sobre l'alúmina que actua com a suport) que mostra una bona activitat en la reacció d'hidrotractament de compostos tipus quitrans en condicions suaus.
Finalment, els catalitzadors basats en Ni han estat preparats i testats en reaccions d'hidrotractament de quitrans en condicions suaus, sent el catalitzador Ni/TiO2/Al2O3 el més actiu de tots. Addicionalment, els catalitzadors de níquel mostren excel·lents activitats catalítiques quan s'utilitzen com a catalitzadors per a la hidrogenació selectiva d'àcids grassos per a la producció d'hidrocarburs. Els catalitzadors de Ni/TiO2/Al2O3 i Ni/TiO2/ZrO2 presenten la major selectivitat a n-heptadecà (C17). Cal mencionar, que el dopatge amb Pt tendeix a augmentar l'activitat de l'últim catalitzador de Ni.
Resumint, s'ha demostrat que diferents catalitzadors basats en metall suportat que han estat desenvolupats durant aquest estudi són capaços de transformar els quitrans lleugers i els àcids grassos en condicions su / [EN] Because of the depletion of petroleum sources, the increased demand for energy and transportation fuels, and the need for both reduction of greenhouse gases (GHG) emissions and the dependence on fossil resources, the utilization of sustainable alternative sources to produce fuels and chemicals becomes essential. In this context, the valorization of light tars (formed during petroleum refining and biomass gasification processes) and other non-conventional sources (i.e., fatty acids), and their conversion into high-added value chemicals will be an interesting and challenging option. In this work, solid catalysts, and catalytic processes for the transformation of light tars via mild hydrotreatment process are developed. This process is studied by employing different polycyclic aromatic hydrocarbons (PAHs) as model molecules representative of light tars feedstocks. The tars-type compounds of this model mixture are transformed into C9-C15 partially hydrogenated hydrocarbons that could be applied as jet fuel additives (improvers) or as chemicals and solvents for industry. First, the tars mild hydrotreatment is studied over Pd supported on TiO2 possessing different crystalline phases. The hydrotreatment activity and selectivity towards the desired hydrogenated products (i.e., tetralin and others) increase by increasing both acidity and surface area of the catalyst, along with the presence of small and well distributed Pd nanoparticles. The Pd/TiO2 Nano catalyst reveals remarkable hydrotreatment activity and stability after several reuses with practically no changes in TiO2 structure, quite low carbon deposition, any Pd leaching detected and maintaining both small Pd particle size and their adequate distribution, even after regeneration of the catalyst. Additionally, Pd/TiO2 Nano catalyst demonstrates to be more effective to the production of C9-C15 hydrocarbons than other commercial and previously reported hydrotreatment catalysts. In addition, Pd supported on TiO2-Al2O3 mixed oxide, prepared via optimized co-precipitation method, is evaluated in the tars mild hydrotreatment, displaying good activity and stability after several reuses. Its hydrotreatment activityis compared with that of Pd/TiO2 Nano and Pd/γ-Al2O3 catalyst; while its application scope is extended to other demanding hydrogenation reactions, such as the reductive amination of bio-derived acetol with ethylenediamine to produce 2-methylpiperazine. Furthermore, a novel Pd supported on TiO2/γ-Al2O3 (Ti precursor impregnated onto alumina as support) developed catalyst demonstrates good activity in the mild hydrotreatment of tars-type compounds. Finally, Ni-based catalysts are prepared and tested in the tars mild hydrotreatment, Ni/TiO2/Al2O3 catalyst being the most active among them. Additionally, Ni catalysts show excellent catalytic performance when applied as catalysts in the selective hydrogenation of fatty acids to produce hydrocarbons, Ni/TiO2/Al2O3 and Ni/TiO2/ZrO2 catalysts offering the highest selectivity to n-heptadecane (C17). Interestingly, Pt doping is encountered to increase the activity of the latter Ni catalysts. Summarizing, different metal supported catalysts developed in this study are capable to transform light tars and fatty acids under mild reaction conditions, thus offering a viable and more sustainable option to produce useful hydrocarbons from other non-conventional sources. / Raad, Z. (2021). Catalysts and catalytic processes for the transformation of tars and other non-conventional feedstocks into fuels and chemicals [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/177954
|
10 |
Hidrodesoxigenação de bio-óleos utilizando catalisadores de níquel e molibdênio suportados em sílica mesoporosa SBA-15. / Hydrodeoxygenation of bio-oils using nickel and molybdenum catalysts supported on SBA-15 mesoporous silica.Lima, Rubens William dos Santos 04 September 2017 (has links)
Uma das desvantagens dos bio-óleos precursores do biodiesel é a alta carga de compostos oxigenados que diminuem seu poder de combustão, reduzindo sua eficiência e inviabilizando seu uso em larga escala. Nesse contexto, o processo de hidrodesoxigenação (HDO) é relevante, dado que elimina esses compostos através de uma reação catalítica e, portanto, aumenta o poder calorífico do combustível. Neste trabalho, estudou-se a HDO do guaiacol (2-metoxifenol) como composto modelo dos bio-óleos derivados da biomassa e avaliou-se o desempenho de catalisadores de Ni e Mo no processo. Estudou-se a performance de um catalisador suportado em SBA-15 - um material mesoporoso de sílica de alta área superficial - em comparação a de um catalisador tradicional suportado em gama-alumina. Para tal, utilizou-se um sistema contínuo em fase gasosa e reator de leito fixo. Utilizaram-se técnicas de caracterização de catalisadores, como adsorção de N2, MEV, MET, DRX, TPR-H2, FTIR, TPO-O2, Raman e TGA. Através das análises DRX e MET, comprovou-se que se formaram partículas de NiO e MoO3 de menor tamanho e mais dispersas no caso do catalisador de SBA-15, devido à menor interação com o suporte e maior área superficial, o que resultou em um grau de redução de 91,6 % deste catalisador, em comparação a 73,4 % do outro, analisados por TPR-H2. Os testes catalíticos mostraram que o catalisador de NiMo/SBA-15 supera o de alumina em termos de conversão no intervalo de 200 a 300 °C, com ciclohexeno e ciclohexano como principais produtos, em face à maior seletividade a catecol e fenol no NiMo/?-Al2O3. A 300 °C, o catalisador suportado em sílica alcançou taxas de 66,5 % para a HDO e 35,3 % HDA (hidrodesaromatização), enquanto o de alumina obteve somente 30,8 e 2,7 %, respectivamente. Finalmente, comprovou-se que o SBA-15 teve uma taxa de desativação por coque de 1,14 mgcoque gcat-1 h-1, 31 % menor que a taxa do catalisador de alumina, cujos depósitos foram de carbono grafítico bem estruturado e irreversível. Em vista dos resultados obtidos, esta dissertação apresenta as rotas e mecanismos de reação do guaiacol nos catalisadores estudados, conhecimento que é relevante para o desenvolvimento e aprimoramento de futuros catalisadores da HDO. / A key disadvantage of the bio-oils precursors of biodiesel is the high load of oxygenated compounds that reduce their heat of combustion, dropping their efficiency and making them unfeasible on a large scale. In light of that, the hydrodeoxygenation process (HDO) is relevant, since it eliminates these compounds through a catalytic reaction, thus increasing the calorific value of the fuel. In this work, the HDO of guaiacol (2-methoxyphenol) as a model compound of the bio-oils derived from biomass was studied and the performance of Ni-Mo catalysts was evaluated. A catalyst supported on SBA-15 - a high surface area mesoporous silica material - was compared to a traditional gamma-alumina-supported catalyst. For this purpose, a continuous gas phase setup with fixed bed reactor was employed. The catalysts properties were identified by N2 adsorption, SEM, TEM, XRD, H2-TPR, FTIR, O2-TPO, Raman and TGA techniques. Through XRD and TEM, it was verified that smaller and more dispersed NiO and MoO3 particles were formed in the case of the SBA-15 catalyst, due to the lower interaction with the support and the greater surface area, which resulted in a degree of reduction of 91.6% for this catalyst, as opposed to 73.4% for the other one, both analyzed by H2-TPR. The catalytic tests showed that the NiMo/SBA-15 outperforms the alumina catalyst in terms of conversion in the range of 200 to 300 °C, with cyclohexene and cyclohexane as main products, in contrast with major selectivity to catechol and phenol on NiMo/?-Al2O3. At 300 °C, the silica-supported catalyst achieved rates of 66.5% for HDO and 35.3% for HDA (hydrodearomatization), whereas alumina reached only 30.8 and 2.7%, respectively. Finally, it was shown that the SBA-15 catalyst had a coke deactivation rate of 1.14 mgcoke gcat-1 h-1, 31% lower than the alumina catalyst, whose coke deposits consisted of well-structured irreversible graphitic carbon. In view of the results, this dissertation proposes the routes and reaction mechanisms of guaiacol on the studied catalysts, knowledge that is pertinent for the development and improvement of future HDO catalysts.
|
Page generated in 0.0629 seconds