• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification des conditions de rupture fragile des gainages combustibles en alliage de zirconium oxydés sous vapeur d’eau à haute température et trempés sous charge axiale / Identification of brittle fracture conditions of zirconium alloy fuel claddings oxidized under steam at high temperature and quenched under axial loading

Thieurmel, Ronan 14 September 2018 (has links)
Lors d’un scénario hypothétique d’Accident par Perte de Réfrigérant Primaire (APRP), les gainages combustibles en alliage de zirconium subissent des sollicitations thermomécaniques sévères dans des environnements chimiques très oxydants. L’évolution des conditions de pression et de température ainsi que la présence du fluide réfrigérant peuvent entraîner dans un premier temps le ballonnement-éclatement puis l’oxydation sous vapeur et la prise d’hydrogène à haute température ainsi que des chargements mécaniques axiaux lors du renoyage final.L’objectif de la thèse est d’identifier les mécanismes et les paramètres clés qui gouvernent la rupture lors de la phase de renoyage sous traction. Des essais semi-intégraux, visant à reproduire un scénario APRP sur des tronçons de gaines de Zircaloy−4, ont été réalisés afin d’étudier le comportement de ce matériau dans de telles conditions.Un seuil fonction de la durée d’oxydation à haute température, à partir duquel la gaine rompt lors du renoyage, est mis en évidence. Deux lieux de rupture sont identifiés : la zone ballonnée où l’oxydation est maximale et la prise d’hydrogène nulle, ainsi que la zone dite « d’hydruration secondaire », sous la zone ballonnée, où la prise d’hydrogène est conséquente et l’oxydation moindre. Par ailleurs, un scénario de la rupture par rapport à la chronologie du renoyage a été établi.Cependant, le traitement macroscopique de ces essais ne permet pas de discriminer ces deux lieux de rupture, car la rupture intervient indépendamment dans le ballon et hors zone ballonnée en fonction du transitoire appliqué et de la morphologie du ballonnement-éclatement. Une approche locale a été mise en place, à partir de la caractérisation microstructurale et fractographique systématique des éprouvettes d’essai, afin d’établir un critère de rupture dépendant de l’état du matériau.La distribution complexe des éléments chimiques et des phases dans l’épaisseur de la gaine a été déterminée. Les changements de phase dans le ballon fortement oxydé, menant à une microstructure globalement fragile, ont été explicités. Une loi de seuil à rupture, en zone d’hydruration secondaire, a été identifiée à l’aide des mesures d’épaisseurs de phases et du profil de teneur en hydrogène. / During hypothetical Loss-Of-Coolant-Accident (LOCA) scenarios, zirconium alloy fuel cladding tubes are subjected to severe thermo- mechanical loading conditions in highly oxidising chemical environments. Pressure and temperature evolution together with cooling water can lead to ballooning and burst followed by steam oxidation and hydrogen uptake at high temperature, and then axial loading during the final reflooding stage.This study focuses on the identification of mechanisms and key parameters which drive cladding fracture during the reflooding stage under axial tensile load.Laboratory-scale semi-integral tests simulating LOCA transients on Zircaloy−4 test rods have been realised. A fracture/no-fracture threshold of oxidation duration at high temperature has been determined. Two fracture locations have been identified: i) the burst zone with maximal oxidation and no hydrogen uptake, and ii) the “secondary hydriding” zone below the burst zone, with substantial hydrogen absorption and lower oxidation levels. Moreover, a scenario of fracture as a function of the reflooding chronology has been identified. Nevertheless, the macroscopic treatment of these tests has not permitted to discriminate these two fracture locations because fracture independently occurs in and out of the burst zone, whatever the applied transient and the balloon and burst morphologies.From systematic microstructural and fractographic characterisation of test specimens, a local approach aiming at identifying a fracture threshold as a function of the microstructural state of the material has been applied. The complex distribution of chemical elements and phases across the cladding thickness has been determined. Phase transformations in the highly-oxidised balloon, leading to a globally brittle microstructure have been explicated. In the secondary hydriding zone, a fracture threshold criterion has been identified by means of layer thickness measurements and hydrogen uptake profile.
2

Synthèse et caractérisation des propriétés structurales et magnétiques de nouveaux siliciures et germaniures à base d'uranium et de cuivre. Etude des propriétés physiques et d'hydruration de quelques composés appartenant aux systèmes Gd - Ni - X où X = Ga, Al, Sn.

Pechev, Stanislav 15 September 1998 (has links) (PDF)
L'étude des systèmes ternaires U - Cu - X (X = Si ou Ge) a permis de mettre en évidence trois nouvelles phases: U3Cu4Si4, U3Cu4Ge4 et UCuGe1,77. Leurs propriétés structurales et magnétiques ont été étudiées et les structures magnétiques des deux premières ont été déterminées. La substitution du cuivre au silicium dans la solution solide UCuxSi2-x (0,28 ≤ x ≤ 0,96) est à l'origine de transitions structurales et magnétiques selon les séquence α-ThSi2(quadratique) → AlB2(hexagonal) → Ni2In(hexagonal) et non magnétique → ferromagnétique → antiferromagnétique. L'évolution des propriétés magnétiques reflète la compétition entre les interactions de type Kondo et RKKY. Désordre cristallographique et frustrations magnétiques sont à l'origine d'un état "verre de spin" au passage ferro-antiferromagnétique. Les propriétés structurales et magnétiques des composés GdNi3X2 (X =Ga, Al, Sn) se sont avérées fortement dépendantes de la nature de l'élément X et du traitement thermique des échantillons. L'augmentation de la taille de X favorise une transition structurale de type CaCu5 → HoNi2,6Ga2,4 ainsi qu'un passage ferro → antiferromagnétique. Une structure cristallographique modulée commensurable (équivalente à une surstructure aHoNi2,6Ga2,4 × aHoNi2,6Ga2,4 × 2cHoNi2,6Ga2,4) est observée pour GdNi3Al2. L'insertion d'hydrogène dans Gd3Ni6Al2 et GdNi3Al2 affaiblit considérablement les interactions magnétiques.
3

Elaboration de matériaux composites à matric Titane et à nano-renforts TiC et TiB par différents procédés de métallurgie des poudres : frittage par hydruration/dehydruration et déformation plastique sévère (Equal Channel Angular Pressing (ECAP)) / Processing of titanium-based composite materials with nanosized TiC and TiB reinforcements using different powder metallurgy processes : hydrogenation/dehydrogenation sintering, and severe plastic deformation (Equal Channel Angular Pressing ECAP)

Bardet, Matthieu 18 March 2014 (has links)
Les composites à matrice Titane avec des renforts nanométriques présente des améliorations intéressantes quant aux propriétés mécaniques, sans affecter la ductilitédu matériau. Ce travail de thèse se concentre sur l’élaboration et la caractérisation dematériaux composites de Titane obtenus par deux différents procédés de métallurgie despoudres : La densification par déformation plastique sévère utilisant l’ECAP (Equal ChannelAngular Pressing) et les procédés de frittage par hydrogénation/déshydrogénation (HDH).L’ECAP est un procédé de densification rapide utilisant la déformation plastique desmatériaux, se faisant à relativement basse température. Les procédés HDH utilisent ladéshydrogénation du titane comme un levier sur les mécanismes de frittage. Les différentsnano-renforts utilisés dans ces travaux sont les particules sphériques de TiC et les aiguillesde TiB. Cette étude montre l’influence de la nature et de la forme des renforts, ainsi que duprocédé de métallurgie des poudres utilisé, sur les propriétés et la microstructure final desmatériaux denses. / Titanium based composites using nano-sized reinforcements are goodcandidates for the improvement in mechanical properties without affecting ductility. Thisstudy is dedicated to fabrication and characterisation of Ti-based composites using twodifferent powder metallurgy processes: Densification using severe plastic deformation viaEqual Channel Angular Pressing (ECAP) and Hydrogenation/Dehydrogenation (HDH)sintering processes (pressureless sintering and hot pressing).ECAP is a fast process basedon a severe plastic deformation of material at relatively low temperature. HDH processes usethe dehydrogenation of Ti as a leverage of the sintering. The different nanosizedreinforcements used in this study are the TiC spherical particles and the whisker shaped TiB.This study shows the influence of either the reinforcement nature and type, and the powdermetallurgy processes used, on the final microstructure and properties of the dense materials.
4

Caractérisation et modélisation du comportement des alliages TiFe dédiés au stockage solide d'hydrogène. : Application à l'amélioration des performances d'un réservoir à hydrures métalliques / Characterization and modeling of the behavior of TiFe alloys dedicated to hydrogen solid storage : Application to improving the performance of a metal hydride tank

Zeaiter, Ali 27 March 2017 (has links)
Les problèmes environnementaux et économiques, engendrés par l’usage des produits pétroliers, et la pénurie de ces énergies fossiles ont conduit à rechercher d’autres sources d’énergies, renouvelables et respectueuses de l’environnement. Nombre de ces sources sont intermittentes et nécessitent de prévoir des solutions de stockage. Le gaz de dihydrogène apparait comme un bon candidat pour remplir cette fonction. L’élément hydrogène, abondant dans la nature, présente sous sa forme gazeuse un pouvoir calorifique de 140 MJ/kg, soit 2,5 fois celui de l’essence. La filière ’hydrogène’ s’appuie sur 3 piliers : la production, le stockage-la distribution et l’utilisation. Le stockage d’hydrogène est traditionnellement réalisé par compression, sous des pressions allant de quelques bars à plusieurs centaines, et par liquéfaction à 20 K. La faible densité volumique de ces deux types de stockage (42 et 70 kgH2/m3) associée à de sérieux problèmes de sécurité et de conception mécanique, rend le stockage solide dans les alliages métalliques particulièrement pertinent pour certaines applications. Cette solution favorise le développement de réservoirs de conception sûre, compacts et ayant une grande densité volumique de 120 kgH2/m3 pour les alliages TiFe par exemple. Ce type d’hydrure a été retenu dans le cadre de ce travail parce qu’il présente des températures et pressions d’utilisation relativement proches des conditions ambiantes, mais aussi parce qu’il ne contient pas de terre rare d’utilisation relativement proches des conditions ambiantes, mais aussi parce qu’il ne contient pas de terre rare. La présente étude vise à caractériser et modéliser le comportement d’hydruration/déshydruration de l’alliage TiFe0.9Mn0.1, en vue d’améliorer ses performances lorsqu’il est intégré à un système de stockage. Dans un premier temps, nous nous sommes attachés à caractériser expérimentalement l’alliage TiFe0.9Mn0.1 sous forme de poudre en le décrivant sur les plans morphologique, chimique et thermodynamique. Ensuite, deux stratégies d’amélioration ont été testées, la première repose sur un traitement mécanique par broyage planétaire à billes, la deuxième considère un traitement thermochimique à température et durée de maintien données. Ces deux stratégies ont permis d’accélérer le processus d’activation de la poudre, mais le broyage planétaire à billes a détérioré de façon notable la cinétique apparente de désorption. Le traitement thermochimique n’a quant à lui pas dégradé les domaines d’équilibre et n’a donc pas eu d’effet néfaste sur les cinétiques de réaction. Les deux paramètres les plus importants de ce traitement, température et temps de maintien, ont été optimisés. D’autres paramètres restent à affiner.[...]La conception d’un système de stockage solide d’hydrogène exige la bonne compréhension des aspects macroscopiques, mais aussi microscopiques, de la réaction d’hydruration, et requiert donc des recherches complémentaires pour trouver de nouveaux axes d’amélioration de ses performances. / He environmental and economic problems caused by the use of petroleum products and the scarcity of these fossil fuels have led to the search for alternative sources of energy, which are renewable and respectful of the environment. Many of these sources are intermittent and require storage solutions. Hydrogen gas appears as a good candidate for this function. The hydrogen element, abundant in nature, has in its gaseous form a calorific value of 140 MJ / kg, i.e. 2.5 times that of gasoline. The 'hydrogen' sector is based on 3 pillars: production, storage, distribution and use. The storage of hydrogen is traditionally carried out by compression, under pressures ranging from a few bars to several hundreds, and by liquefaction at 20 K. The low density of these two types of storage (42 and 70 kgH2 / m3) associated with serious problems of safety and mechanical design, make solid storage in metal alloys particularly relevant for some applications. This solution favors the development of safe, compact design tanks with a high density of 120 kgH2/m3for TiFe alloys, for example. This type of hydride has been retained in this work because it has operating conditions of temperatures and pressures that are relatively close to ambient conditions, and also because it does not contain rare earth elements. The aim of this study is to characterize and model the hydriding/dehydriding behavior of the TiFe0.9Mn0.1 alloy, in order to improve its performance when it is integrated into a storage system. We first tried to characterize the alloy TiFe0.9Mn0.1 in powder form by describing it morphologically, chemically and thermodynamically. Then, two strategies of improvement were tested, the first one based on a mechanical treatment by planetary ball milling, the second considers a thermochemical treatment at given temperature and duration. Both strategies accelerated the process of powder activation, but the planetary ball milling significantly impaired the apparent desorption kinetics. The thermo-chemical treatment did not degrade the equilibrium domains and thus did not have an adverse effect on the reaction kinetics. The two most important parameters of this treatment, temperature and holding time, have been optimized. Other parameters remain to be refined.In addition to this experimental characterization, we have undertaken to describe the hydriding / dehydriding reaction macroscopically. The model allows to account for the thermodynamic response of the hydride within a reservoir. This work presents the results obtained on a tank containing 4 kg of TiFe0.9Mn0.1 powder when different hydrogen loading / unloading scenarios are considered: (i) loading / unloading under constant pressure, (ii) loading / unloading under an initial dose ( Method of Sievert), iii) loading / unloading under inlet or outlet flux of hydrogen. For each scenario, the effect of the coupling with a heat exchange system on the filling / emptying times is analyzed and optimal operating conditions are proposed. Finally, a sensitivity study using the Morris method is presented, and the most influential parameters of the model on the reaction rates are identified. The design of a solid hydrogen storage system requires a good understanding of the macroscopic as well as the microscopic aspects of the hydriding reaction and therefore requires further research to find new directions for improving its performance.

Page generated in 0.2566 seconds