Spelling suggestions: "subject:"hypercube."" "subject:"bypercube.""
41 |
Hypercube machine implementation of a 2-D FFT algorithm for object recognitionDatari, Srinivasa R. January 1989 (has links)
No description available.
|
42 |
Implementation of BMLS (baseline microwave landing system) computer model on hypercube processorsMylvaganam, Mohanaharan January 1991 (has links)
No description available.
|
43 |
Some contributions to latin hypercube design, irregular region smoothing and uncertainty quantificationXie, Huizhi 21 May 2012 (has links)
In the first part of the thesis, we propose a new class of designs called multi-layer sliced Latin hypercube design (DSLHD) for running computer experiments. A general recursive strategy for constructing MLSLHD has been developed. Ordinary Latin hypercube designs and sliced Latin hypercube designs are special cases of MLSLHD with zero and one layer respectively. A special case of MLSLHD with two layers, doubly sliced Latin hypercube design, is studied in detail. The doubly sliced structure of DSLHD allows more flexible batch size than SLHD for collective evaluation of different computer models or batch sequential evaluation of a single computer model. Both finite-sample and asymptotical sampling properties of DSLHD are examined. Numerical experiments are provided to show the advantage of DSLHD over SLHD for both sequential evaluating a single computer model and collective evaluation of different computer models. Other applications of DSLHD include design for Gaussian process modeling with quantitative and qualitative factors, cross-validation, etc. Moreover, we also show the sliced structure, possibly combining with other criteria such as distance-based criteria, can be utilized to sequentially sample from a large spatial data set when we cannot include all the data points for modeling. A data center example is presented to illustrate the idea. The enhanced stochastic evolutionary algorithm is deployed to search for optimal design.
In the second part of the thesis, we propose a new smoothing technique called completely-data-driven smoothing, intended for smoothing over irregular regions. The idea is to replace the penalty term in the smoothing splines by its estimate based on local least squares technique. A close form solution for our approach is derived. The implementation is very easy and computationally efficient. With some regularity assumptions on the input region and analytical assumptions on the true function, it can be shown that our estimator achieves the optimal convergence rate in general nonparametric regression. The algorithmic parameter that governs the trade-off between the fidelity to the data and the smoothness of the estimated function is chosen by generalized cross validation (GCV). The asymptotic optimality of GCV for choosing the algorithm parameter in our estimator is proved. Numerical experiments show that our method works well for both regular and irregular region smoothing.
The third part of the thesis deals with uncertainty quantification in building energy assessment. In current practice, building simulation is routinely performed with best guesses of input parameters whose true value cannot be known exactly. These guesses affect the accuracy and reliability of the outcomes. There is an increasing need to perform uncertain analysis of those input parameters that are known to have a significant impact on the final outcome. In this part of the thesis, we focus on uncertainty quantification of two microclimate parameters: the local wind speed and the wind pressure coefficient. The idea is to compare the outcome of the standard model with that of a higher fidelity model. Statistical analysis is then conducted to build a connection between these two. The explicit form of statistical models can facilitate the improvement of the corresponding modules in the standard model.
|
44 |
Codes de Gray généralisés à l'énumération des objets d'une structure combinatoire sous contrainte / Generalised Gray codes for the enumeration of the objects of a combinatorial structure under certain restrictions.Castro Trejo, Aline 15 October 2012 (has links)
Le cube de Fibonacci est un sous-graphe isométrique de l'hyper- cube ayant un nombre de Fibonacci de sommets. Le cube de Fibonacci a été initialement introduit par W-J. Hsu comme un réseau d'interconnexion et, comme l'hypercube, il a des propriétés topologiques très attractives, mais avec une croissance plus modérée. Parmi ces propriétés, nous discutons de l'hamiltonicité dans le cube de Fibonacci et aussi dans le cube de Lucas qui est obtenu à partir du cube de Fibonacci en supprimant toutes les chaînes qui commencent et nissent avec 1. Nous trouvons également le nombre de som- mets des cubes de Fibonacci et Lucas ayant une certaine excentricité. En n, nous présentons une étude de deux cubes du point de vue de la domination et du 2-packing. / The Fibonacci cube is an isometric subgraph of the hypercube having a Fibonacci number of vertices. The Fibonacci cube was originally proposed by W-J. Hsu as an interconnection network and like the hypercube it has very attractive topological properties but with a more moderated growth. Among these properties, we discuss the hamiltonicity in the Fibonacci cube and also in the Lucas cube which is obtained by removing all the strings that begin and end with 1 from the Fibonacci cube. We give also the eccentricity sequences of the Fibonacci and the Lucas cubes. Finally, we present a study of both cubes from the domination and the 2-packing points of view.
|
45 |
Hypercubes Latins maximin pour l’echantillonage de systèmes complexes / Maximin Latin hypercubes for experimental designLe guiban, Kaourintin 24 January 2018 (has links)
Un hypercube latin (LHD) maximin est un ensemble de points contenus dans un hypercube tel que les points ne partagent de coordonnées sur aucune dimension et tel que la distance minimale entre deux points est maximale. Les LHDs maximin sont particulièrement utilisés pour la construction de métamodèles en raison de leurs bonnes propriétés pour l’échantillonnage. Comme la plus grande partie des travaux concernant les LHD se sont concentrés sur leur construction par des algorithmes heuristiques, nous avons décidé de produire une étude détaillée du problème, et en particulier de sa complexité et de son approximabilité en plus des algorithmes heuristiques permettant de le résoudre en pratique.Nous avons généralisé le problème de construction d’un LHD maximin en définissant le problème de compléter un LHD entamé en respectant la contrainte maximin. Le sous-problème dans lequel le LHD partiel est vide correspond au problème de construction de LHD classique. Nous avons étudié la complexité du problème de complétion et avons prouvé qu’il est NP-complet dans de nombreux cas. N’ayant pas déterminé la complexité du sous-problème, nous avons cherché des garanties de performances pour les algorithmes résolvant les deux problèmes.D’un côté, nous avons prouvé que le problème de complétion n’est approximable pour aucune norme en dimensions k ≥ 3. Nous avons également prouvé un résultat d’inapproximabilité plus faible pour la norme L1 en dimension k = 2. D’un autre côté, nous avons proposé un algorithme d’approximation pour le problème de construction, et avons calculé le rapport d’approximation grâce à deux bornes supérieures que nous avons établies. En plus de l’aspect théorique de cette étude, nous avons travaillé sur les algorithmes heuristiques, et en particulier sur la méta-heuristique du recuit simulé. Nous avons proposé une nouvelle fonction d’évaluation pour le problème de construction et de nouvelles mutations pour les deux problèmes, permettant d’améliorer les résultats rapportés dans la littérature. / A maximin Latin Hypercube Design (LHD) is a set of point in a hypercube which do not share a coordinate on any dimension and such that the minimal distance between two points, is maximal. Maximin LHDs are widely used in metamodeling thanks to their good properties for sampling. As most work concerning LHDs focused on heuristic algorithms to produce them, we decided to make a detailed study of this problem, including its complexity, approximability, and the design of practical heuristic algorithms.We generalized the maximin LHD construction problem by defining the problem of completing a partial LHD while respecting the maximin constraint. The subproblem where the partial LHD is initially empty corresponds to the classical LHD construction problem. We studied the complexity of the completion problem and proved its NP-completeness for many cases. As we did not determine the complexity of the subproblem, we searched for performance guarantees of algorithms which may be designed for both problems. On the one hand, we found that the completion problem is inapproximable for all norms in dimensions k ≥ 3. We also gave a weaker inapproximation result for norm L1 in dimension k = 2. On the other hand, we designed an approximation algorithm for the construction problem which we proved using two new upper bounds we introduced.Besides the theoretical aspect of this study, we worked on heuristic algorithms adapted for these problems, focusing on the Simulated Annealing metaheuristic. We proposed a new evaluation function for the construction problem and new mutations for both the construction and completion problems, improving the results found in the literature.
|
46 |
Optimisation quadratique en variables binaires : quelques résultats et techniquesMbuntcha Wuntcha, Calvin January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
47 |
Optimisation quadratique en variables binaires : quelques résultats et techniquesMbuntcha Wuntcha, Calvin January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
48 |
Sur les fonctions logiques permutantesPastel, Anne-Marie 29 October 1971 (has links) (PDF)
.
|
49 |
Hamiltonovskost hyperkrychlí bez k-hadů a k-cívek / Hamiltonicity of hypercubes without k-snakes and k-coilsPěgřímek, David January 2016 (has links)
A snake (coil) is an induced path (cycle) in a hypercube. They are well known from the snake-in-the-box (coil-in-the-box) problem which asks for the longest snake (coil) in a hypercube. They have been generalized to k-snakes (k-coils) which preserve distances between their every two vertices at distance at most k − 1 in hypercube. We study them as a variant of Locke's hypothesis. It states that a balanced set F ⊆ V (Qn) of cardinality 2m can be avoided by a Hamiltonian cycle if n ≥ m + 2 and m ≥ 1. We show that if S is a k-snake (k-coil) in Qn for n ≥ k ≥ 6 (n ≥ k ≥ 7), then Qn − V (S) is Hamiltonian laceable. For a fixed k the number of vertices of a k-coil may even be exponential with n. We introduce a dragon, which is an induced tree in a hypercube, and its generalization a k-dragon which preserves distances between its every two vertices at distance at most k−1 in hypercube. By proving a specific lemma from my Bachelor thesis that was previously verified by a computer, we finish the proof of the theorem regarding Hamiltonian laceability of hypercubes without n-dragons.
|
50 |
Uma contribuição para avaliar o desempenho de sistemas de transporte emergencial de saúde / A contribution to evaluate the performance of emergency health transportation systemsTakeda, Renata Algisi 01 December 2000 (has links)
A rapidez na realização do atendimento às vítimas é uma das maiores necessidades de serviços de atendimento médico de urgência, e o tempo decorrido entre o instante da ocorrência da solicitação pelo serviço e o início do atendimento, denominado tempo de resposta, é um dos principais fatores que influenciam o desempenho do sistema. Este tempo depende de uma reunião de fatores como condições de tráfego, dia e período do dia, número de veículos disponíveis e suas localizações, capacitação profissional da equipe, etc. Apresenta-se neste trabalho uma análise do desempenho do serviço oferecido na cidade de Campinas-SP, tratando o problema por meio do modelo hipercubo de filas, que considera as variações aleatórias dos processos de chegadas e atendimento dos chamados. Sua aplicação produz uma ampla variedade de indicadores de desempenho para o sistema, que são comparados com os valores reais observados, para validar a hipótese de aplicação do modelo. Os resultados de sua aplicação para configurações operacionais alternativas, tais como descentralização e aumento do número de ambulâncias, mostraram uma elevação significativa do nível de serviço oferecido ao usuário. Conclui-se que o modelo constitui uma importante ferramenta de análise para este tipo de sistema, auxiliando na tomada de decisões estratégicas e operacionais do sistema. / One of the major concerns of medical emergency systems is to provide the fastest possible medical attention for the victims. The time elapsed between the emergency call and the assistance, called the response time, is one of the main factors that influence the system\'s performance. This time lapse depends on traffic conditions, the day of the week and time of day, the number of available vehicles and their location, the rescue team\'s professional qualifications, etc. This work consists of an analysis of the performance of the emergency service available in Campinas, SP, and deals with the problem using the hypercube queuing model, which considers stochastic variations of the arrival and assistance processes. The application of this model produces a wide variety of system performance indicators, which are compared with the real observed values to validate the model\'s hypothetical application. Application of the model in alternative operational scenarios, such as decentralization and a greater number of ambulances, showed a significant increase in the quality of the service offered to the user. It was concluded that the model constitutes an important analytical tool for this type of system, serving as an aid for strategic and operational decision-making.
|
Page generated in 0.0277 seconds