• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Feynman integrals and hyperlogarithms

Panzer, Erik 06 March 2015 (has links)
Wir untersuchen Feynman-Integrale in der Darstellung mit Schwinger-Parametern und leiten rekursive Integralgleichungen für masselose 3- und 4-Punkt-Funktionen her. Eigenschaften der analytischen (und dimensionalen) Regularisierung werden zusammengefasst und wir beweisen, dass in der Euklidischen Region jedes Feynman-Integral als eine Linearkombination konvergenter Feynman-Integrale geschrieben werden kann. Dies impliziert, dass man stets eine Basis aus konvergenten Masterintegralen wählen kann und somit divergente Integrale nicht selbst berechnet werden müssen. Weiterhin geben wir eine in sich geschlossene Darstellung der Theorie der Hyperlogarithmen und erklären detailliert die nötigen Algorithmen, um diese für die Berechnung mehrfacher Integrale anzuwenden. Wir definieren eine neue Methode um die Singularitäten solcher Integrale zu bestimmen und stellen ein Computerprogramm vor, welches die Integrationsalgorithmen implementiert. Unser Hauptresultat ist die Konstruktion unendlicher Familien masseloser 3- und 4-Punkt-Funktionen (diese umfassen unter anderem alle Leiter-Box-Graphen und deren Minoren), deren Feynman-Integrale zu allen Ordnungen in der epsilon-Entwicklung durch multiple Polylogarithmen dargestellt werden können. Diese Integrale können mit dem vorgestellten Programm explizit berechnet werden. Die Arbeit enthält interessante Beispiele von expliziten Ergebnissen für Feynman-Integrale mit bis zu 6 Schleifen. Insbesondere präsentieren wir den ersten exakt bestimmten Gegenterm in masseloser phi^4-Theorie, der kein multipler Zetawert ist sondern eine Linearkombination multipler Polylogarithmen, ausgewertet an primitiven sechsten Einheitswurzeln (und geteilt durch die Quadratwurzel aus 3). Zu diesem Zweck beweisen wir ein Paritätsresultat über die Zerlegbarkeit der Real- und Imaginärteile solcher Zahlen in Produkte und Beiträge geringerer Tiefe (depth). / We study Feynman integrals in the representation with Schwinger parameters and derive recursive integral formulas for massless 3- and 4-point functions. Properties of analytic (including dimensional) regularization are summarized and we prove that in the Euclidean region, each Feynman integral can be written as a linear combination of convergent Feynman integrals. This means that one can choose a basis of convergent master integrals and need not evaluate any divergent Feynman graph directly. Secondly we give a self-contained account of hyperlogarithms and explain in detail the algorithms needed for their application to the evaluation of multivariate integrals. We define a new method to track singularities of such integrals and present a computer program that implements the integration method. As our main result, we prove the existence of infinite families of massless 3- and 4-point graphs (including the ladder box graphs with arbitrary loop number and their minors) whose Feynman integrals can be expressed in terms of multiple polylogarithms, to all orders in the epsilon-expansion. These integrals can be computed effectively with the presented program. We include interesting examples of explicit results for Feynman integrals with up to 6 loops. In particular we present the first exactly computed counterterm in massless phi^4 theory which is not a multiple zeta value, but a linear combination of multiple polylogarithms at primitive sixth roots of unity (and divided by the square-root of 3). To this end we derive a parity result on the reducibility of the real- and imaginary parts of such numbers into products and terms of lower depth.

Page generated in 0.3179 seconds