• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Feynman integrals and hyperlogarithms

Panzer, Erik 06 March 2015 (has links)
Wir untersuchen Feynman-Integrale in der Darstellung mit Schwinger-Parametern und leiten rekursive Integralgleichungen für masselose 3- und 4-Punkt-Funktionen her. Eigenschaften der analytischen (und dimensionalen) Regularisierung werden zusammengefasst und wir beweisen, dass in der Euklidischen Region jedes Feynman-Integral als eine Linearkombination konvergenter Feynman-Integrale geschrieben werden kann. Dies impliziert, dass man stets eine Basis aus konvergenten Masterintegralen wählen kann und somit divergente Integrale nicht selbst berechnet werden müssen. Weiterhin geben wir eine in sich geschlossene Darstellung der Theorie der Hyperlogarithmen und erklären detailliert die nötigen Algorithmen, um diese für die Berechnung mehrfacher Integrale anzuwenden. Wir definieren eine neue Methode um die Singularitäten solcher Integrale zu bestimmen und stellen ein Computerprogramm vor, welches die Integrationsalgorithmen implementiert. Unser Hauptresultat ist die Konstruktion unendlicher Familien masseloser 3- und 4-Punkt-Funktionen (diese umfassen unter anderem alle Leiter-Box-Graphen und deren Minoren), deren Feynman-Integrale zu allen Ordnungen in der epsilon-Entwicklung durch multiple Polylogarithmen dargestellt werden können. Diese Integrale können mit dem vorgestellten Programm explizit berechnet werden. Die Arbeit enthält interessante Beispiele von expliziten Ergebnissen für Feynman-Integrale mit bis zu 6 Schleifen. Insbesondere präsentieren wir den ersten exakt bestimmten Gegenterm in masseloser phi^4-Theorie, der kein multipler Zetawert ist sondern eine Linearkombination multipler Polylogarithmen, ausgewertet an primitiven sechsten Einheitswurzeln (und geteilt durch die Quadratwurzel aus 3). Zu diesem Zweck beweisen wir ein Paritätsresultat über die Zerlegbarkeit der Real- und Imaginärteile solcher Zahlen in Produkte und Beiträge geringerer Tiefe (depth). / We study Feynman integrals in the representation with Schwinger parameters and derive recursive integral formulas for massless 3- and 4-point functions. Properties of analytic (including dimensional) regularization are summarized and we prove that in the Euclidean region, each Feynman integral can be written as a linear combination of convergent Feynman integrals. This means that one can choose a basis of convergent master integrals and need not evaluate any divergent Feynman graph directly. Secondly we give a self-contained account of hyperlogarithms and explain in detail the algorithms needed for their application to the evaluation of multivariate integrals. We define a new method to track singularities of such integrals and present a computer program that implements the integration method. As our main result, we prove the existence of infinite families of massless 3- and 4-point graphs (including the ladder box graphs with arbitrary loop number and their minors) whose Feynman integrals can be expressed in terms of multiple polylogarithms, to all orders in the epsilon-expansion. These integrals can be computed effectively with the presented program. We include interesting examples of explicit results for Feynman integrals with up to 6 loops. In particular we present the first exactly computed counterterm in massless phi^4 theory which is not a multiple zeta value, but a linear combination of multiple polylogarithms at primitive sixth roots of unity (and divided by the square-root of 3). To this end we derive a parity result on the reducibility of the real- and imaginary parts of such numbers into products and terms of lower depth.
2

Elliptic multiple polylogarithms in open string theory

Kaderli, André 09 September 2021 (has links)
In dieser Dissertation wird eine Methode zur Berechnung der genus-eins Korrekturen von offenen Strings zu Feldtheorie-Amplituden konstruiert. Hierzu werden Vektoren von Integralen definiert, die ein elliptisches Knizhnik-Zamolodchikov-Bernard (KZB) System auf dem punktierten Torus erfüllen, und die entsprechenden Matrizen aus dem KZB System berechnet. Der elliptische KZB Assoziator erzeugt eine Relation zwischen zwei regulierten Randwerten dieser Vektoren. Die Randwerte enthalten die genus-null und genus-eins Korrekturen. Das führt zu einer Rekursion im Genus und der Anzahl externer Zustände, die einzig algebraische Operationen der bekannten Matrizen aus dem KZB System umfasst. Geometrisch werden zwei externe Zustände der genus-null Weltfläche der offenen Strings zu einer genus-eins Weltfläche zusammengeklebt. Die Herleitung dieser genus-eins Rekursion und die Berechnung der relevanten Matrizen wird durch eine graphische Methode erleichtert, mit der die Kombinatorik strukturiert werden kann. Sie wurde durch eine erneute Untersuchung der auf Genus null bekannten Rekursion entwickelt, bei welcher der Drinfeld Assoziator Korrekturen offener Strings auf Genus null auf solche mit einem zusätzlichen externen Zustand abbildet. Diese genus-null Rekursion umfasst ebenfalls ausschliesslich Matrixoperationen und basiert auf einem Vektor von Integralen, der eine Knizhnik-Zamolodchikov (KZ) Gleichung erfüllt. Die in der Rekursion gebrauchten Matrizen aus der KZ Gleichung werden als Darstellungen einer Zopfgruppe identifiziert und rekursiv berechnet. Der elliptische KZB Assoziator ist die Erzeugendenreihe der elliptischen Multiplen Zeta-Werte. Die Konstruktion der genus-eins Rekursion benötigt verschiedene Eigenschaften dieser Werte und ihren definierenden Funktionen, den elliptischen Multiplen Polylogarithmen. So werden Relationen verschiedener Klassen von elliptischen Polylogarithmen und Funktionalrelationen erzeugt durch elliptische Funktionen hergeleitet. / In this thesis, a method to calculate the genus-one, open-string corrections to the field-theory amplitudes is constructed. For this purpose, vectors of integrals satisfying an elliptic Knizhnik-Zamolodchikov-Bernard (KZB) system on the punctured torus are defined and the matrices from the KZB system are calculated. The elliptic KZB associator is used to relate two regularised boundary values of these vectors. The boundary values are shown to contain the open-string corrections at genus zero and genus one. This yields a recursion in the genus and the number of external states, solely involving algebraic operations on the known matrices from the KZB system. Geometrically, two external states of the genus-zero, open-string worldsheet are glued together to form a genus-one, open-string worldsheet. The derivation of this genus-one recursion and the calculation of the relevant matrices is facilitated by a graphical method to structure the combinatorics involved. It is motivated by the reinvestigation of the recursion in the number of external states known at genus zero, where the Drinfeld associator maps the genus-zero, open-string corrections to the corrections with one more external state. This genus-zero recursion also involves matrix operations only and is based on a vector of integrals satisfying a Knizhnik-Zamolodchikov (KZ) equation. The matrices in the KZ equation and used in the recursion are shown to be braid matrices and a recursive method for their calculation is provided. The elliptic KZB associator is the generating series of elliptic multiple zeta values. The construction of the genus-one recursion requires various properties of these values and their defining functions, the elliptic multiple polylogarithms. Thus, the third part of this thesis consists of an analysis of elliptic multiple polylogarithms, which in particular leads to relations among different classes of elliptic polylogarithms and functional relations generated by elliptic functions.

Page generated in 0.0597 seconds