Spelling suggestions: "subject:"hypersonic low"" "subject:"hypersonic flow""
21 |
Investigations On Film Cooling At Hypersonic Mach Number Using Forward Facing Injection From Micro-Jet ArraySriram, R 01 August 2008 (has links)
A body in a hypersonic flow field will experience very high heating especially during re-entry. Conventionally this problem is tackled to some extent by the use of large angle
blunt cones. At the cost of increased drag, the heat transfer rate is lower over most parts of the blunt body, except in a region around the stagnation point. Thus even with blunt cones, management of heat transfer rates and drag on bodies at hypersonic speeds
continues to be an interesting research area. Various thermal protection systems have
been proposed in the past, like heat sink cooling, ablation cooling and aerospikes. The
ablative cooling system becomes extremely costly when reusability is the major concern.
Also the shape change due to ablation can lead to issues with the vehicle control. The
aerospikes themselves may become hot and ablate at hypersonic speeds. Hence an
alternate form of cooling system is necessary for hypersonic flows, which is more
feasible, cost effective and efficient than the conventional cooling systems.
Injection of a mass of cold fluid into the boundary layer through the surface is one
of the potential cooling techniques in the hypersonic flight corridors. These kinds of
thermal protection systems are called mass transfer cooling systems. The injection of the mass may be through discrete slots or through a porous media. When the coolant is
injected through a porous media over the entire surface, the coolant comes out as a
continuous mass. Such a cooling system is also referred as “transpiration cooling
system”. When the fluid is injected through discrete slots, the system is called as “film
cooling system”. In either case, the coolant absorbs the incoming heat through its rise in
enthalpy and thus modifies the boundary layer characteristics in such a way that the heat flow rate to the surface is less. Injection of a forward facing jet (opposite to the freestream direction) from the stagnation point of a blunt body can be used for mitigating both the aerodynamic drag and heat transfer rates at hypersonic Mach numbers. If the jet has enough momentum it can push the bow shock forward, resulting in reduced drag. This will also reduce heat transfer rate over most part of the body except around the jet re-attachment region. A reattachment shock impinging on the blunt body invariably increases the local heat flux. At lower momentum fluxes the forward facing jet cannot push the bow shock ahead of the blunt body and spreads easily over the boundary layer, resulting in reduced heat transfer rates. While the film cooling performance improves with mass flow rate of the jet, higher momentum flow rates can lead to a stronger reattachment leading to higher heat transfer rate at the reattachment zone. If we are able to reduce the momentum flux of the coolant for the same mass flow rate, the gas coming out can easily spread over the boundary layer and it is possible to improve the film cooling performance.
In all the reported literature, the mass flow rate and the momentum flux are not
varied independently. This means, if the mass flow rate is increased, there is a
corresponding increase in the momentum flux. This is because the injection (from a
particular orifice and for a particular coolant gas) is controlled only by the total pressure of injection and free stream conditions. The present investigation is mainly aimed at demonstrating the effect of reduction in momentum of the coolant (injected opposing a hypersonic freestream from the stagnation point of a blunt cone), keeping the mass flow rate the same, on the film cooling performance. This is achieved by splitting a single jet into a number of smaller jets of same injection area (for same injection total pressure and same free stream conditions). To the best of our knowledge there is no report on the use
of forward facing micro-jet array for film cooling at hypersonic Mach numbers. In this
backdrop the main objectives of the present study are:
• To experimentally demonstrate the effect of splitting a single jet into an array of closely spaced smaller micro-jets of same effective area of injection (injected opposite to a hypersonic freestream from the stagnation zone), on the reduction in surface heat transfer rates on a large angle blunt cone.
· Identifying various parameters that affect the flow phenomenon and doing a systematic investigation of the effect of the different parameters on the surface heat transfer rates and drag.
Experimental investigations are carried out in the IISc hypersonic shock tunnel on
the film cooling effectiveness. Coolant gas (nitrogen and helium) is injected opposing
hypersonic freestream as a single jet (diameter 2 mm and 0.9 mm), and as an array of iv micro jets (diameter 300 micron each) of same effective area (corresponding to the
respective single jet). The coolant gas is injected from the stagnation zone of a blunt cone model (58o apex angle and nose radius of 35 mm). Experiments are performed at a flow freestream Mach number of 5.9 at 0o angle of attack, with a stagnation enthalpy of 1.84 MJ/Kg, with and without injections. The ratios of the jet stagnation pressure to the pitot pressure (stagnation pressure ratio) used in the present study are 1.2 and 1.45. Surface convective heat transfer measurements using platinum thin film sensors, time resolved schlieren flow visualization and aerodynamic drag measurements using accelerometer force balance are used as flow diagnostics in the present study. The theoretical stagnation
point heat transfer rate without injection for the given freestream conditions for the test model is 79 W/cm2 and the corresponding aerodynamic drag from Newtonian theory is
143 N. The measured drag value without injection (125 N) shows a reasonable match
with theory. As the injection is from stagnation zone it is not possible to measure the surface heat transfer rates at the stagnation point. The sensors thus are placed from the nearest possible location from the stagnation point (from 16 mm from stagnation point on the surface). The sensors near the stagnation point measures a heat transfer rate of 65 W/cm2 on an average without any injection. Some of the important conclusions from the study are:
• Up to 40% reduction in surface heat transfer rate has been measured near the
stagnation point with the array of micro jets, nitrogen being the coolant, while the
corresponding reduction was up to 30% for helium injection. Considering the single jet injection, near the stagnation point there is either no reduction in heat transfer rate or a slight increase up to 10%.
· Far away from stagnation point the reduction in heat transfer with array of micro-jets is only slightly higher than corresponding single jet for the same pressure ratio. Thus the cooling performance of the array of closely spaced micro jets is
better than the corresponding single jet almost over the entire surface.
• The time resolved flow visualization studies show no major change in the shock
standoff distance with the low momentum gas injection, indicating no major changes in other aerodynamic aspects such as drag.
· The drag measurements also indicate that there is virtually no change in the overall aerodynamic drag with gas injection from the micro-orifice array.
· The spreading of the jets injected from the closely spaced micro-orifice array over
the surface is also seen in the visualization, indicating the absence of a region of strong reattachment.
· The reduction in momentum flux of the injected mass due to the interaction
between individual jets in the case of closely spaced micro-jet array appears to be
the main reason for better performance when compared to a single jet.
The thesis is organized in six chapters. The importance of film cooling at hypersonic speeds and the objectives of the investigation are concisely presented in
Chapter 1. From the knowledge of the flow field with counter-flow injection obtained
from the literature, the important variables governing the flow phenomena are organized
as non-dimensional parameters using dimensional analysis in Chapter 2. The description of the shock tunnel facility, diagnostics and the test model used in the present study is given in Chapter 3. Chapter 4 describes the results of drag measurements and flow visualization studies. The heat transfer measurements and the observed trends in heat transfer rates with and without coolant injection are then discussed in detail in Chapter 5. Based on the obtained results the possible physical picture of the flow field is discussed
in Chapter 6, followed by the important conclusions of the investigation.
|
22 |
Perfect Gas Navier-stokes Solutions Of Hypersonic Boundary Layer And Compression Corner FlowsAziz, Saduman 01 September 2005 (has links) (PDF)
The purpose of this thesis is to perform numerical solutions of hypersonic, high temperature, perfect gas flows over various geometries. Three dimensional, thin layer, compressible, Navier-Stokes equations are solved. An upwind finite difference approach with Lower Upper-Alternating Direction Implicit (LU-ADI) decomposition is used.
Solutions of laminar, hypersonic, high temperature, perfect gas flows over flat plate and compression corners (qw=5° / , 10° / , 14° / , 15° / , 16° / , 18° / and 24° / ) with eight different free-stream and wall conditions are presented and discussed. During the analysis, air viscosity is calculated from the Sutherland formula up to 1000° / K, for the temperature range between 1000 º / K and 5000 º / K a curve fit to the estimations of Svehla is applied.
The effects of Tw/T0 on heat transfer rates, surface pressure distributions and boundary layer characteristics are studied. The effects of corner angle (& / #952 / w) on strong shock wave/boundary layer interactions with extended separated regions are investigated. The obtained results are compared with the available experimental data, computational results, and theory.
|
23 |
Modeling Thermochemical Nonequilibrium Processes and Flow Field Simulations of Spark-Induced PlasmaJulien Keith Louis Brillon (8292123) 24 April 2020 (has links)
This study is comprised of two separate parts: (1) modeling thermochemical nonequilibrium processes, and (2) flow field simulations of spark-induced plasma. In the first part, the methodology and literature for modeling thermochemical nonequilibrium processes in partially ionized air is presented and implemented in a zero-dimensional solver, termed as NEQZD. The solver was verified for a purely reacting flow case as well as two thermochemical nonequilibrium flow cases. A three-temperature electron-electronic model for thermochemical nonequilibrium partially ionizing air mixture was implemented and demonstrated the ability to capture additional physics compared to the legacy two-temperature model through the inclusion of electronic energy nonequilibrium. In the second part of this work, full scale axisymmetric simulations of the flow field produced by the abrupt heat release of spark-induced plasma were presented and analyzed for two electrode configurations. The heat release was modeled based on data from experiments and assumed that all electrical power supplied to the electrodes is converted to thermal energy. It was found that steeper electrode walls lead to a greater region of hot gas, a stronger shock front, and slightly larger vortices.
|
24 |
Multiscale Computational Analysis and Modeling of Thermochemical Nonequilibrium FlowHan Luo (9168512) 27 July 2020 (has links)
Thermochemical nonequilibrium widely exists in supersonic combustion, cold plasma and hypersonic flight. The effect can influence heat transfer, surface ablation and aerodynamic loads. One distinct feature of it is the coupling between internal energy excitation and chemical reactions, particularly the vibration-dissociation coupling. The widely used models are empirical and calibrated based on limited experimental data. Advances in theories and computational power have made the first-principle calculation of thermal nonequilibrium reaction rates by methods like quasi-classical trajectory (QCT) almost a routine today. However, the approach is limited by the uncertainties and availability of potential energy surfaces. To the best of our knowledge, there is no study of thermal nonequilibrium transport properties with this approach. Most importantly, non-trivial effort is required to process the QCT data and implement it in flow simulation methods. In this context, the first part of this work establishes the approach to compute transport properties by the QCT method and studies the influence of thermal nonequilibrium on transport properties for N<sub>2</sub>-O molecules. The preponderance of the work is the second part, a comprehensive study of the development of a new thermal nonequilibrium reaction model based on reasonable assumptions and approximations. The new model is as convenient as empirical models. By validating against recent QCT data and experimental results, we found the new model can predict nonequilibrium characteristics of dissociation reactions with nearly the same accuracy as QCT calculations do. In general, the results show the potential of the new model to be used as the standard dissociation model for the simulation of thermochemical nonequilibrium flows.
|
25 |
Výpočet aerodynamických charakteristik nosiče pro nízkou oběžnou dráhu / Aerodynamic analysis of low orbit launcherFojtl, Michal January 2017 (has links)
Master’s thesis deals with aerodynamic heating of launch vehicle during ascent phase by using CFD simulation. Ascent trajectory and payload fairing geometry is design using data of existing small launch vehicles. Critical flight regimes are identified using 2D calculations, and in these regimes analysis is performed by axially symmetric simulations. Simulation results are compared to values obtained from theoretical and semi-empirical calculations.
|
26 |
Numerical Investigations of Magnetohydrodynamic Hypersonic FlowsGuarendi, Andrew N. 14 June 2013 (has links)
No description available.
|
27 |
Non-equilibrium Models for High Temperature Gas FlowsAndrienko, Daniil 07 August 2014 (has links)
No description available.
|
28 |
Analysis of the stability of a flat-plate high-speed boundary layer with discrete roughnessPadilla Montero, Ivan 31 May 2021 (has links) (PDF)
Boundary-layer transition from a laminar to a turbulent regime is a critical driver in the design of high-speed vehicles. The aerothermodynamic loads associated with transitional or fully turbulent hypersonic boundary layers are several times higher than those associated with laminar flow. The presence of isolated roughness elements on the surface of a body can accelerate the growth of incoming disturbances and introduce additional instability mechanisms in the flow field, eventually leading to a premature occurrence of transition. This dissertation studies the instabilities induced by three-dimensional discrete roughness elements located inside a high-speed boundary layer developing on a flat plate. Two-dimensional local linear stability theory (2D-LST) is employed to identify the instabilities evolving in the three-dimensional flow field that characterizes the wake induced by the roughness elements and to investigate their evolution downstream. A formulation of the disturbance energy evolution equation available for base flows depending on a single spatial direction is generalized for the first time to base flows featuring two inhomogeneous directions and perturbations depending on three spatial directions. This generalization allows to obtain a decomposition of the temporal growth rate of 2D-LST instabilities into the different contributions that lead to the production and dissipation of the total disturbance energy. This novel extension of the formulation provides an additional layer of information for understanding the energy exchange mechanisms between a three-dimensional base flow and the perturbations resulting from 2D-LST. Stability computations for a calorically perfect gas illustrate that the wake induced by the roughness elements supports the growth of different sinuous and varicose instabilities which coexist together with the Mack-mode perturbations that evolve in the flat-plate boundary layer, and which become modulated by the roughness-element wake. A single pair of sinuous and varicose disturbances is found to dominate the wake instability in the vicinity of the obstacles. The application of the newly developed decomposition of the temporal growth rate reveals that the roughness-induced wake modes extract most of their potential energy from the transport of entropy fluctuations across the base-flow temperature gradients and most of their kinetic energy from the work of the disturbance Reynolds stresses against the base-flow velocity gradients. Further downstream, the growth rate of the wake instabilities is found to be influenced by the presence of Mack-mode disturbances developing on the flat plate. Strong evidence is observed of a continuous synchronization mechanism between the wake instabilities and the Mack-mode perturbations. This phenomenon leads to an enhancement of the amplification rate of the wake modes far downstream of the roughness element, ultimately increasing the associated integrated amplification factors for some of the investigated conditions. The effects of vibrational molecular excitation and chemical non-equilibrium on the instabilities induced by a roughness element are studied for the case of a high-temperature boundary layer developing on a sharp wedge configuration. For this purpose, a 2D-LST solver for chemical non-equilibrium flows is developed for the first time, featuring a fully consistent implementation of the thermal and transport models employed for the base flow and the perturbation fields. This is achieved thanks to the automatic derivation and implementation tool (ADIT) available within the von Karman Institute extensible stability and transition analysis (VESTA) tool-kit, which enables an automatic derivation and implementation of the 2D-LST governing equations for different thermodynamic flow assumptions and models. The stability computations for this configuration show that sinuous and varicose disturbances also dominate the wake instability in the presence of vibrational molecular energy mode excitation and chemical reactions. The resulting base-flow cooling associated with the modeling of such high-temperature phenomena is found to have opposite stabilizing and destabilizing effects on the streamwise evolution of the sinuous and varicose instabilities. The modeling of vibrational excitation and chemical non-equilibrium acting exclusively on the perturbations is found to have a stabilizing influence in all cases. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
29 |
Investigation of Heat Transfer Rates Around the Aerodynamic Cavities on a Flat Plate at Hypersonic Mach NumbersPhilip, Sarah Jobin January 2011 (has links) (PDF)
Aerodynamic cavities are common features on hypersonic vehicles which are caused in both large and small scale features like surface defects, pitting, gap in joints etc. In the hypersonic regime, the presence of such cavities alters the flow phenomenon considerably and heating rates adjacent to the discontinuities can be greatly enhanced due to the diversion of flow. Since the 1960s, a great deal of theoretical and experimental research has been carried out on cavity flow physics and heating. However, most of the studies have been done to characterize the effect downstream and within the cavity. In the present study, a series of were carried out in the shock tunnel to investigate the heating characteristics, upstream and on the lateral side of the cavity. Heat flux measurement has been done using indigenously developed high resistance platinum thin film gauges. High resistance gauges, as contrary to the conventionally used low resistance gauges were showing good response to the extremely low heat flux values on a flat plate with sharp leading edge. The experimental measurements of heat done on a flat plate with sharp leading edge using these gauges show good match with theoretical relation by Crabtree et al. Flow visualization using high speed camera with the cavity model and shock structures visualized were similar to reported in supersonic cavity flow. This also goes to state that in spite of the fluctuating shear layer-the main feature of hypersonic flow over a cavity ,reasonable studies can be done within the short test time of shock tunnel.
Numerical Simulations by solving the Navier-Stokes equation, using the commercially available CFD package FLUENT 13.0.0 has been done to complement the experimental studies.
|
30 |
Experimental Investigation Of Hypersonic Boundary Layer Modifications Due To Heat Addition And Enthalpy Variation Over A Cone Cylinder ConfigurationSingh, Tarandeep 11 1900 (has links)
Despite years of research in high speed boundary layer flow, there is still a need for insightful experiments to realize key features of the flow like boundary layer response to different conditions and related transition mechanisms. Volumes of data on the these problems point to the fact that there is still much to be understood about the nature of boundary layer instability causing transition and growth of boundary layer in different conditions. Boundary layer stability experiments have been found to be more useful, in which the boundary layer is perturbed and its behavior observed to infer useful conclusions. Also, apart from the stability part, the effect of various changes in boundary layer due to the perturbation makes interesting observation to gain more insight into the understood and the not so understood facets of the same.
In view of the above, the effect of a steady axisymmetric thermal bump is investigated on a hypersonic boundary layer over a 60º sharp cone cylinder model. The thermal bump, placed near tip of the cone, perturbs the boundary layer, the behavior of which is observed by recording the wall heat flux on the cone and cylinder surface using platinum thin film sensors. The state of the boundary layer is qualitatively assessed by the wall heat flux comparisons between laminar and turbulent values. The same thermal bump also acts as a heat addition source to boundary layer in which case this recorded data provides a look into the effect of the heat addition to the wall heat flux. To gain a larger view of heat addition causing changes to the flow, effects of change in enthalpy are also considered.
Experiments are performed in the IISc HST2 shock tunnel facility at 2MJkg−1 stag-nation enthalpy and Mach number of 8,with and without the thermal bump to form comparisons. Some experiments are also performed in the IISc HST3 free piston driven shock tunnel facility at 6MJkg−1, to investigate the effect of change in stagnation enthalpy on the wall heat flux. To support the experimental results theoretical comparisons and computational studies have also been carried out.
The results of experiments show that the laminar boundary layer over the whole model remains laminar even when perturbed by the thermal bump. The wall heat flux measurements show change on the cone part where there seems to be fluctuation in the temperature gradients caused by the thermal bump, which decrease at first and then show an increase towards the base of the cone. The cylinder part remains the same with and without the thermal bump, indicating heavy damping effects by the expansion fan at cone cylinder junction. A local peak in wall heat flux is observed at the junction which is reduced by 64% by the action of the thermal bump. The possible reason for this is attributed to the increased temperature gradients at the wall due to delayed dissipation of heat that is accumulated in the boundary layer as a result of the thermal bump action. The comparison of data for enthalpies of 2MJkg−1 and 6MJkg−1 show that there are negligible real gas effects in the higher enthalpy case and they do not affect the wall heat flux much. Also it is found that the thermal bump fails to dump heat into the flow directly though it creates heat addition virtually by mere discontinuity in the surface temperature and causes temperature gradients fluctuation in the boundary layer. Considering the thermal bump action and the change in stagnation enthalpy of the flow, there seems to be no change in both cases that can be attributed to a common observation resulting from the factor of change in heat inside the boundary layer.
|
Page generated in 0.0508 seconds