• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 45
  • 26
  • 14
  • 7
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 227
  • 59
  • 56
  • 53
  • 44
  • 36
  • 25
  • 20
  • 18
  • 17
  • 17
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Metallic and Semiconductor Nanoparticles: Cellular Interactions, Applications and Toxicity

Hauck, Tanya Sabrina 15 September 2011 (has links)
The objectives of this thesis were to optimize the synthesis and surface coating of metallic and semiconductor nanoparticles, to understand how these materials interact with cells and physiological systems and to investigate how they can be used to deliver thermal therapy for medical applications. Reproducible high-yield synthesis of gold nanorods and surface coating with a variety of polymers and silica was optimized. Using gold nanorods as a model system, the relationship between particle surface chemistry, surface charge and cellular uptake was studied, as well as the toxicity of nanoparticles of different surface chemistry. Low toxicity in vitro was encouraging and was confirmed in vivo by intravenously injecting Sprague-Dawley rats with semiconductor quantum dots of various surface coatings. Low toxicity was found during biochemical, haematological and pathological assessment, and these results indicate that applications of nanoparticles should be further investigated. One such application is the use of near infrared absorbing gold nanorods in remotely activated hyperthermia. It was shown that gold nanorods act synergistically with the chemotherapeutic cisplatin to improve cytotoxicity, and reduce the required cytotoxic drug dose to 33% of the unheated amount. Due to the success of hyperthermia treatment in vitro, continuing and future work involves the use of gold nanorods ex vivo on excised human corneas in a novel application to weld corneal tissue for improved wound closure following cataract surgery.
32

A Study on the biochemical effects of hyperthermia of tumour cells.

January 1992 (has links)
by Lui Chi Pang. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1992. / Includes bibliographical references (leaves 265-281). / Acknowledgements --- p.i / Abbreviations --- p.ii / Abstract --- p.iii / Table of contents --- p.vii / Introduction / Review of Literature --- p.2 / Chapter I. --- Cellular response of hyperthermia --- p.3 / Chapter A) --- Effects on macromolecules synthesis --- p.3 / Chapter B) --- Effects on glycolysis and respiration --- p.5 / Chapter C) --- "Effects on plasma membrane, intracellular ionic level and intracellular pH" --- p.6 / Chapter II. --- Physical aspects --- p.11 / Chapter A) --- Survival curves --- p.11 / Chapter B) --- Concept of thermal dose --- p.13 / Chapter III. --- Clinical thermal theraphy --- p.21 / Chapter A) --- Hyperthermia in vivo --- p.21 / Chapter B) --- Combination of hyperthermia and radiotheraphy --- p.29 / Chapter C) --- Combination of hyperthermia and chemotherapy --- p.37 / Chapter IV. --- Thermotolerance --- p.48 / Scope of study --- p.54 / Materials and Methods / Chapter I. --- Cytotoxicity tests of cells in vitro --- p.59 / Chapter II. --- Whole body hyperthermia on Ehrlich ascite tumour (EAT)-bearing mice --- p.63 / Chapter III. --- Combination of hyperthermia and drugs --- p.66 / Chapter IV. --- Measurement of intracellular pH --- p.68 / Chapter V. --- Assay for sialic acids in the plasma membrane --- p.72 / Chapter VI. --- Assays of nucleolar proteins --- p.76 / Chapter VII. --- Acetylation of nuclear proteins --- p.80 / Chapter VIII. --- Detection of 72-kD heat shock protein --- p.93 / Results and Discussion / Chapter I. --- Cytotoxicity of hyperthermia in vitro --- p.102 / Chapter II. --- Hyperthermia on EAT cells in vivo --- p.131 / Chapter III. --- Cytotoxicity of combination of hyperthermia and drugs --- p.148 / Chapter IV. --- Intracellular pH changes during hyperthermia --- p.162 / Chapter V. --- Modification of sialic acid level in plasma membrane --- p.180 / Chapter VI. --- Conformational changes of nucleolar proteins --- p.193 / Chapter VII. --- Hyperthermic effect on acetylation of nuclear proteins --- p.209 / Chapter VIII. --- Induction of 72-kD heat shock protein --- p.223 / General Discussion / Chapter A. --- Hyperthermic cytotoxicity --- p.249 / Chapter B. --- Effects on plasma membrane and control of intracellular pH --- p.253 / Chapter C. --- Effects on the nuclear proteins --- p.256 / Chapter D. --- Conclusion --- p.263 / Bibliography --- p.264
33

Le rôle d'HSP70 sur l'activation de l'inflammasome NLRP3 / The effect of HSP70 on the activation of the NLRP3 inflammasome

Martine, Pierre 23 November 2017 (has links)
L’inflammasome NLRP3 est un complexe multi-protéique responsable de la production d’IL-1β en réponse à des signaux de danger. Certaines mutations de NLRP3 étant responsables de maladies inflammatoires l’activation de ce complexe se doit d’être finement régulée. Dans cette étude je me suis intéressé à l’importance de la protéine de choc thermique HSP70 dans l’activation de l’inflammasome NLRP3. J’ai dans un premier temps mis en évidence que l’absence d’HSP70 entraine une amplification des symptômes de la péritonite chez la souris. Le manque d’HSP70 augmente également l’activation de la caspase-1 et la production d’IL-1β par les macrophages issus de la moelle osseuse de souris (BMDMs) à la suite d’un traitement par différents activateurs de NLRP3 in vitro. Ces phénomènes sont associés à une augmentation du nombre et de la taille des complexes ASC/NLRP3 dans la cellule. De manière correspondante, la surexpression d’HSP70 dans les BMDMs diminue l’activation de la caspase-1 et la production d’IL-1β après traitement par des activateurs de NLRP3. Une des explications possibles de l’effet inhibiteur d’HSP70 est son interaction avec NLRP3 que j’ai observé par PLA (Proximity Ligation Assay). J’ai également utilisé un choc thermique pour surexprimer HSP70 et observé une inhibition de l’inflammasome NLRP3 in vitro. Finalement, une hyperthermie in vivo inhibe également les symptômes de la péritonite chez la souris, soulignant la relevance physiologique de ces observations. Cette étude fournit donc des preuves de l’effet inhibiteur d’HSP70 sur l’inflammasome NLRP3 et met en lumière un possible nouvel outil de traitement des maladies inflammatoires. / NLRP3 inflammasome is a multi-protein complex aimed at producing IL-1β in response to danger signals. Gain of function mutations of NLRP3 are responsible for inflammatory diseases, so NLRP3-dependent inflammation required tight regulation. Here we investigated the importance of the stress sensor, Heat Shock Protein 70 (HSP70) on the NLRP3 inflammasome activation. First, the lack of HSP70 leads to a worsening of NLRP3-dependent peritonitis in mice. HSP70 deficiency also enhances caspase-1 activation and IL-1β production by murine Bone Marrow-Derived Macrophages (BMDMs) under NLRP3 activators treatment in vitro. These phenomena are associated with an increase in the number and size of ASC/NLRP3 specks. At the opposite side, the overexpression of HSP70 in BMDMs decreases caspase-1 activation and IL-1β production under NLRP3 activators treatment in vitro. One possible explanation of the inhibitory effect of HSP70 is its interaction with NLRP3. A heat shock, used as a way to induce the expression of HSP70 also inhibits the NLRP3 inflammasome activation in vitro. Finally, in vivo hyperthermia also inhibits peritonitis features in mice, highlighting the physiological relevance of our observations. This study provides evidences on the inhibitory role of HSP70 on the NLRP3 inflammasome and on the possibility to treat inflammatory diseases by inducing its expression, mainly by hyperthermia.
34

Echauffement de nanoparticules par un champ magnétique haute fréquence : Applications en cancérologie et catalyse de réaction Fischer-Tropsch / Heating of nanoparticles under a high frequency magnetic field : Applications in oncology and Fischer-Tropsch reaction catalysis

Connord, Vincent 26 February 2015 (has links)
Dans le cadre du projet MultiFun par lequel cette thèse a été financée, nous avons travaillé en collaboration avec des équipes européennes de synthèse chimique pour proposer des nanoparticules d'oxydes de fer dédiées à la détection et au traitement du cancer par hyperthermie magnétique. Habituellement, l'efficacité des nanoparticules est déterminée par la valeur du SAR (Specific Absoption Rate, en W/g), mesuré par élévation de température. Nous avons développé un banc permettant la mesure de cycles d'hystérésis dans les mêmes gammes d'amplitude et de fréquence de champs magnétiques que celles utilisées habituellement en hyperthermie magnétique. Le cycle d'hystérésis fourni plus d'informations sur l'échantillon et permet par exemple d'évaluer l'importance des interactions inter-particulaires. Le projet MultiFun prévoyait également l'étude du traitement in vivo. Le LPCNO a donc développé un inducteur adapté aux expériences sur le petit animal (souris, rats). Cet électroaimant refroidit à l'air a un entrefer de 3 cm et fonctionne à un champ de 23 mT pour des temps de traitements d'une heure. Nous avons également collaboré avec le Laboratoire de Réceptologie et Ciblage Thérapeutique en Cancérologie pour effectuer des expériences d'hyperthermie magnétique in vitro au moyen de nanoparticules fonctionnalisées puis internalisées de manière spécifique dans les lysosomes. L'application d'un champ magnétique haute fréquence aux cellules contenant ces nanoparticules induit de forts pourcentages de mort cellulaire (principalement par voies apoptotique). Dans ces travaux, les nanoparticules ont de faibles SAR et sont présentes en faibles quantités dans les cellules, ce qui n'engendre pas d'élévations de températures mesurables. L'efficacité du traitement dans ces conditions pose nombre de questions quant aux mécanismes réels entrainant la mort de la cellule. Pour tenter de répondre à ces questions, nous avons conçu un système permettant d'appliquer des champs magnétiques hautes fréquences in vitro sous un microscope confocal à fluorescence couramment utilisé pour suivre des mécanismes intracellulaire à l'aide de fluorochromes. On introduit un électroaimant miniaturisé (largeur d'entrefer ≈ 400 μm) directement dans une boite de culture cellulaire. On génère ainsi un champ d'environ 60 mT à 300 kHz. Cette méthode nous permet d'observer les cellules et leurs organites durant le temps de traitement. Les niveaux de mort cellulaire atteints ici sont équivalents aux expériences précédentes, et valident ainsi l'utilisation de cet inducteur à entrefer réduit. Pour l'heure, nous avons quantifié l'apparition en temps réel des ROS (Reactive Oxygen Species) dans la cellule lors de l'application du champ. Nous avons également mis en lumière la perméabilisation lysosomale, qui peut engendrer la libération d'agents de mort cellulaires. Enfin cet outil permettra de continuer les recherches de mécanismes intracellulaires pour des échantillons soumis à un champ magnétique extérieur. Les nanoparticules soumises à un champ magnétique alternatif peuvent également être utilisées comme catalyseurs de réactions chimiques. Nous avons utilisé les nanoparticules synthétisées au LPCNO comme catalyseurs de la réaction Fischer-Tropsch. Ce procédé permet de produire industriellement des hydrocarbures à partir de monoxyde de carbone et de dihydrogène. Des caractérisations poussées des propriétés structurales, magnétiques, d'échauffement et de catalyse ont été menées sur des nanoparticules possédant un cœur de fer recouvert d'un métal catalytique (ruthénium ou cobalt). La preuve que ces nanoparticules peuvent catalyser la réaction de Fischer-Tropsch lorsqu'elles sont soumises à un champ magnétique haute-fréquence a été établie, et une bonne corrélation entre leur puissance de chauffe et leur activité catalytique a été montrée. / As partners of Multifun by which this thesis was funded, we have worked with European groups of chemists to provide iron oxide nanoparticles dedicated to the detection and treatment of cancer by magnetic hyperthermia. Usually, the nanoparticles efficiency is determined by the SAR value (Specific Absoption Rate, in W / g), measured by a calorimetric method. We have developed a device for measuring hysteresis loops at the same amplitude and frequency range of magnetic fields than those usually used in magnetic hyperthermia. Hysteresis loops provide more information about the samples and allows for example to assess the importance of inter-particle interactions. Multifun project also included the study of in vivo treatments. LPCNO has developed an inductor suitable for experiments on small animals (mice, rats). The electromagnet is air-cooled, displays a gap of 3 cm and operates at a field of 23 mT during one hour. We also worked with the Laboratoire de Réceptologie et Ciblage Thérapeutique en Cancérologie, Toulouse, to perform in vitro magnetic hyperthermia experiments using functionalized nanoparticles specifically internalized into lysosomes. The application of a high frequency magnetic field to the cells containing these nanoparticles induces a significant cell death (mainly apoptotic pathways). In these studies, the nanoparticles have low SAR, and are present in small quantities in the cells. Thus no temperature rise is measured during the experiments. The efficacy of treatment in these conditions poses many questions about the actual mechanisms at the origin of cell death. To try to answer these questions, we have designed a setup permitting to apply high frequency magnetic fields under a confocal fluorescence microscope; the latter is commonly used to monitor intracellular mechanisms with fluorochromes. We introduce a miniaturized solenoid (gap width ≈ 400 µm) directly into a cell culture box. This generates a field of approximately 60 mT at 300 kHz. This method allows us to observe the cells and their organelles during the time of treatment. Infected cell death levels here are equivalent to the previous experiments, which thus validates the use of this reduced gap inductor. For now, we quantified the appearance of ROS (Reactive Oxygen Species) in real time in the cell during the application of the field. We also evidenced the lysosomal permeabilization, which can cause the release of cellular death agents. Finally this tool will serve to continue research on intracellular mechanisms in cells inside an external high-frequency magnetic field. Nanoparticles subjected to an alternating magnetic field can also be used as catalysts of chemical reactions. We used the nanoparticles synthesized LPCNO as catalysts for the Fischer-Tropsch reaction. This process allows the industrial production of hydrocarbons from carbon monoxide and hydrogen gas. Extensive characterizations of structural, magnetic, heating and catalysis properties were carried out on nanoparticles with an iron core coated with a catalytic metal (ruthenium or cobalt). Evidence that these nanoparticles catalyze the Fischer-Tropsch synthesis when subjected to a high-frequency magnetic field has been established, and a good correlation between their heating power and their catalytic activity has been shown.
35

Numerical modelling of ferromagnetic embolisation hyperthermia in the treatment of liver cancer

Tsafnat, Naomi, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2005 (has links)
Both primary and secondary liver cancers are common and the majority of patients are not eligible for surgical resection or a liver transplant, which are considered the only hope of cure. Mortality rates are high and there is a need for alternative treatment options. New forms of local treatment work best on small tumours; large ones, however, remain difficult to treat. Hyperthermia involves heating tumours to 40??-44?? C. The aim is to heat the entire tumour without damaging the surrounding normal tissue. Treating deep seated tumours is technically challenging. Ferromagnetic embolisation hyperthermia (FEH) is a novel method of treating liver tumours. Magnetic microspheres are infused into the hepatic artery and lodge primarily in the tumour periphery. An applied alternating-current magnetic field causes the microspheres to heat. Animal experiments have shown that this is a promising technique. There is a need for modelling of FEH prior to commencement of clinical trials. Analytical and numerical models of tumour heating during FEH treatment are presented here. The models help predict the temperature distributions that are likely to arise during treatment and give insight into the factors affecting tumour and liver heating. The models incorporate temperature-dependent thermal properties and blood perfusion rates of the tissues and a heterogeneous clustering of microspheres in the tumour periphery. Simulations show that the poorly perfused tumours heat preferentially while the liver is effectively cooled by blood flow from the portal vein. A peripheral distribution of heat sources produces a more even temperature field throughout the tumour, compared to a heat source that is centred within the tumour core. Large tumours reach higher temperatures and have higher heating rates, supporting experimental findings. Using temperature-dependent, rather than constant, values for thermal conductivities and blood perfusion rates results in higher temperatures within the tumour. The uneven clustering of microspheres in the tumour periphery leads to a more heterogeneous temperature distribution in the core, but it has less of an effect on the wellperfused liver. The results show that FEH has the potential to effectively treat liver tumours and the technique merits further investigation.
36

Development Of A Delivery System And Optical-Thermal Model For Laser Interstitial Thermotherapy Of Breast Tumors

Salas, Nelson 21 December 2007 (has links)
The purpose of this project was to develop a delivery system optimized for laser interstitial thermotherapy of small tumors of the breast. The proposed approach is to combine laser interstitial thermotherapy with stereotactic imaging for fiber guidance and treatment monitoring. The goals of the dissertation were to design a fiber insertion system for cylindrical diffusing tip optical fibers and to derive optimal laser parameters for coagulation of 1 cm tumor plus a surrounding 1 cm thick rim of healthy tissue. A fiber insertion system compatible with a high resolution stereotactic digital X-ray biopsy system was designed to guide the fiber into the tumor site in similar fashion to the insertion of the biopsy needle. An optical-thermal model consisting of a radiation model, a thermal model, and a coagulation model was developed and validated using ex-vivo porcine tissue. A single integrating sphere optical property measurement system and an inverse Monte Carlo algorithm were developed to measure the optical properties of ex-vivo porcine tissue at 830, 940, and 980 nm. An experimental method was developed to determine the parameters of the Arrhenius model (frequency factor (A) and activation energy (Ea)). The optical-thermal model was validated by comparing the predicted temperature and coagulation to results of laser irradiation experiments at 830, 940, and 980 nm. Using published values of the optical properties of the breast, the model predicts that a 3 cm coagulation size can be produced without vaporization in 10 min with 10.4 W at 980 and 940 nm and 13.2 W at 830 nm. The same outcome can be achieved in 20 min with 4.5 W at 980 and 940 nm and 6.1 W at 830 nm.
37

Alterations in Lipid Metabolism and Exercise Performance During Passive Heat Exposure and Subsequent Exercise in the Heat

O'Hearn, Katharine 15 January 2013 (has links)
Heat exposure causes several physiological and metabolic alterations. Although lipids are vital in sustaining energy production, heat-induced alterations in lipid metabolism have not been clearly established. CHAPTER 1 reviews the known metabolic alterations resulting from heat stress, with a specific focus on changes in whole-body lipid utilization and plasma lipids. CHAPTER 1also outlines the physiological changes caused by heat stress, and their role in reducing exercise performance. The study presented in CHAPTER 2 has shown that, compared to thermoneutral conditions, NEFA concentrations were 37% higher following passive heating and 34% higher following exercise in the heat, without significant changes in whole-body lipid utilization. In addition, the level of hyperthermia attained during passive pre-heating and exercise in the heat resulted in a 13% decrease in total external work and a significantly higher rate of perceived exertion. CHAPTER 3 summarizes the study results and presents the limitations and applications of the study.
38

Drug Delivery and Anti-Vascular Effects of Temperature Sensitive Liposomal Doxorubicin

Manzoor, Ashley Anne January 2010 (has links)
<p>Traditionally, the goal of nanoparticle-based chemotherapy has been to decrease normal tissue toxicity by improving drug specificity to tumor. Relying on the EPR effect (Enhanced Permeability and Retention), a host of nanoparticles (from micelles and dendrimers to liposomes and lipidic nanoparticles) have been developed and tested for passive accumulation into tumor interstitium. Unfortunately, most nanoparticles achieve only suboptimal drug delivery to tumors, due to heterogeneity of tumor vessel permeability, limited nanoparticle penetration, and relatively slow drug release. However, recent developments in nanoparticle technology have occurred with the design and testing of a fast drug-releasing liposome triggered by local heat. This temperature-sensitive liposome formulation loaded with doxorubicin (Dox-TSL) has already shown substantial anti-tumor efficacy and is currently in clinical trials.</p><p> Previous pre-clinical work to understand the mechanism of efficacy has illustrated increases in overall drug concentration in the tumor, and an anti-vascular effect not observed with heat alone. These initial studies have also suggested that these liposomes may be the most efficacious when they are injected into a pre-heated tumor, with the hypothesis that in this treatment scheme the liposomes may be releasing inside the tumor vasculature. However, whether intravascular release is indeed occurring, and the subsequent implications this paradigm change in drug delivery could have are still unanswered questions. </p><p>The experiments presented herein aimed to investigate two effects: the existence and influence of intravascular drug release on drug delivery and distribution within the tumor, and the effect of drug delivery on subsequent anti-vascular effects. To investigate drug delivery, two mouse models were used. Dorsal window chambers implanted with FaDu human squamous carcinomas were used with real-time intravital confocal microscopy to evaluate time-resolved delivery of doxorubicin and liposome extravasation over the first 20 minutes of treatment. As a complimentary mouse model, flank FaDu tumors were also treated with Dox-TSL or treatment controls (doxorubicin with and without heat and Doxil with heat), and subsequently sectioned and histologicaly imaged to evaluate drug delivery and penetration depth, as well as impact on hypoxia and perfusion parameters. To investigate vascular effects, a GFP-eNos transgenic mouse model was used, also with window chamber confocal microscopy, to evaluate morphological changes occurring in the tumor vasculature following treatment.</p><p> The results presented herein demonstrate that contrary to the traditional liposome paradigm of extravasation and subsequent drug release, thermally sensitive liposomes release drug inside the tumor vasculature, and that the released free drug diffuses into the tumor interstitium. Real-time confocal imaging of doxorubicin delivery to murine tumor window chambers illustrates that intravascular drug release provides a mechanism to increase both the time that tumor cells are exposed to maximum drug levels and the penetration distance achievable by free drug diffusion. Histological analysis further confirms this finding, illustrating that drug delivered with Dox-TSL intravascular release can result in drug penetration levels up to 80 µm from vessels, in comparison with 40 µm achievable with free drug with heat. Further, Dox-TSL delivers drug to a higher percentage of a tumor's hypoxic area than possible with free drug with or without heat. Endothelial cells display marked morphological changes apparent immediately following treatment, with significant vascular destruction at 6 hours. However, heat had a similar influence on vascular morphology, underscoring the complexity of the anti-vascular effect, particularly in the more sensitive vasculature of a mouse model compared with reported human vascular heat tolerances. This work establishes intravascular release as a new paradigm in drug delivery to solid tumors, resulting in improved drug bioavailability, penetration depth, and enhanced delivery of drug to hypoxic regions of tumors.</p> / Dissertation
39

Ultrasound Catheter Transducers for Intracranial Brain Imaging and Therapy

Herickhoff, Carl Dean January 2011 (has links)
<p>Each year, over 13,000 people in the United States die from a primary malignant brain tumor. Currently, primary BTs are treated most commonly by surgery, radiotherapy, and systemic chemotherapy, though each of these methods carries a risk of complications or acute side effects.</p><p>Ultrasound hyperthermia has been investigated as way to open the blood-brain barrier for improved chemotherapeutic drug delivery, but previous methods have involved either invasively removing skull bone via surgery or non-invasively dealing with the high ultrasound attenuation, reflection, and phase aberration resulting from the skull and its variable thickness. Dual-mode ultrasound transducers for image-guided therapy have also been investigated for several applications; in some instances, phased arrays are ideal, allowing control over the ultrasound energy deposition pattern and inherent spatial registration between imaging, treatment, and monitoring.</p><p>Additionally, thermosensitive liposomes can be configured to encapsulate drugs and actively target regions of tumor angiogenesis. When used in combination with localized hyperthermia, thermosensitive liposomes can provide targeted control of drug release that may enhance chemotherapeutic efficacy in many clinical settings. Meanwhile, catheter devices and endovascular techniques are used by interventional neuroradiologists to treat various intracranial diseases, including intracranial aneurysm and dural venous sinus thrombosis. These procedures can be extended to the treatment of intracranial tumors (advancement of a 5 Fr catheter as far as the frontal portion of the superior sagittal sinus has been demonstrated).</p><p>The objective of the work presented in this dissertation was the realization of a dual-mode catheter transducer for a minimally-invasive, vascular approach to deliver localized, image-guided ultrasound hyperthermia to an intracranial tumor target. Toward this end, a series of prototype ultrasound transducers were designed, simulated, built, and tested for imaging and therapeutic potential.</p><p>Two 14-Fr phased-array prototypes were built with PZT-5H ceramic and tested for real-time 3D intracranial imaging and focused-beam hyperthermia capability. These were able to visualize the lateral ventricles and Circle of Willis in a canine model, and generate a temperature rise over 4&deg;C at a 2-cm focal distance in excised tissue.</p><p>Single-channel intravascular ultrasound (IVUS) coronary imaging catheters as small as 3.5 Fr were then considered as a construction template; several possible transducer apertures were simulated before fabricating prototypes with PZT-4. The transducers exhibited a dual-frequency response, due to the presence of thickness-mode and width-mode resonances. A thermal model was developed to estimate the +4&deg;C thermal penetration depth for a given transducer aperture, predicting an effective therapeutic range of up to 12 mm with a 5 × 0.5 mm aperture.</p><p>A 3.5-Fr commercial mechanical IVUS catheter was retrofitted with a PZT-4 transducer and tested for 9-MHz imaging performance in several animal studies, successfully visualizing anatomical structures in the brain and navigating a minimally-invasive vascular pathway toward the brain. An identical PZT-4 transducer was used to build a 3.3-MHz therapy prototype, which produced a temperature rise of +13.5&deg;C at a depth of 1.5 mm in live xenograft brain tumor tissue in the mouse model.</p><p>These studies indicate that a minimally-invasive catheter transducer can be made capable of visualizing brain structures and generating localized hyperthermia to trigger drug release from thermosensitive liposomes in brain tumor tissue.</p> / Dissertation
40

The Role Of Sertonin And Vesicular Monoamine Transporters In The Adverse Responses To Methylenedioxymethamphetamine

Lizarraga-Zazueta, Lucina Eridna January 2014 (has links)
3,4-(±)-Methylenedioxymethamphetamine (MDMA, Ecstasy) is a widely abused amphetamine derivative with potent stimulant properties. The neuropharmacological effects of MDMA are biphasic in nature. MDMA initially causes synaptic monoamine release, primarily of serotonin (5-HT), producing hyperthermia and hyperactivity (5-HT syndrome). Conversely, the long-term effects of MDMA manifest as a prolonged depletion in 5-HT, and structural damage to serotonergic nerve terminals. Monoamine transporter systems at the plasma membrane and storage vesicles of 5-HT neurons have been implicated in MDMA toxicity. Nonetheless, many mechanistic questions remain regarding the precise role of uptake transporters in MDMA neurotoxicity. The present study was designed to address the importance of the serotonin reuptake transporter (SERT) and the vesicular monoamine transporter 2 (VMAT2) to the physiological, behavioral and neurotoxic responses to MDMA. SERT functions as a primary regulator of 5-HT homeostasis, mediating the reuptake of 5-HT from the synaptic space following its release during neurotransmission. SERT is a molecular target site for MDMA and many antidepressant agents such as the selective serotonin reuptake inhibitor (SSRI) class. Pharmacological inhibition of SERT protects against MDMA-induced serotonergic neurotoxicity. Thus, the effects of MDMA are in part mediated by an ability to interact with and inhibit SERT. Using a SERT-knockout (SERT-KO) rat model, we determined that SERT deficiency modulated the acute toxicities of MDMA, such as hyperthermia and hyperactivity, whilst completely preventing long-term depletions in tissue 5-HT levels, indicating the abolishment of neurotoxicity. Disruption of vesicular monoamine storage via interaction with VMAT2 has also been implicated in MDMA neurotoxicity. VMAT2 participates in the transport of monoamine neurotransmitters, in particular 5-HT and dopamine (DA), into intra-neuronal storage vesicles. As such, VMAT2 is critical in maintaining neuronal health by preventing neurotransmitter oxidation within the cytosol. Pharmacological inhibition of VMAT2 with Ro4-1284 reduced MDMA-induced hyperactivity and averted hyperthermia along with persistent serotonergic deficits. Overall, our results corroborate the hypothesis that SERT and VMAT2 are critical to the in vivo effects of MDMA. Furthermore, given that VMAT2 inhibition diminished the behavioral response to MDMA in rats, pharmacological manipulation of this transporter could be used in the treatment of MDMA abuse and overdose.

Page generated in 0.0648 seconds