• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molekulare Charakterisierung der Carboanhydrase Nce103 im Kontext des CO2 induzierten Polymorphismus in Candida albicans / Molecular characterisation of the carbonic anhydrase Nce103 in the context of carbon dioxide induced polymorphism in Candida albicans

Klengel, Torsten January 2008 (has links) (PDF)
Die Detektion von Umweltsignalen und die gezielte zelluläre Reaktion ist eine zentrale und für das Überleben aller Lebewesen essentielle Fähigkeit. Candida albicans, als dominierender humanpathogener Pilz, ist hochgradig verschiedenen biochemischen und physikalischen Umweltbedingungen ausgesetzt, welche sowohl die Zellmorphologie als auch die Virulenz dieses Erregers beeinflussen. In der vorliegenden Arbeit wurde der Einfluss von Kohlendioxid, als ubiquitär vorkommendes Gasmolekül, auf die Zellmorphologie und Virulenz untersucht. Erhöhte Konzentrationen von Kohlendioxid stellen ein äußerst robustes Umweltsignal dar, welches die morphologische Transition vom Hefewachstum zum hyphalen Wachstum, einem Hauptvirulenzfaktor, in Candida albicans stimuliert. In diesem Zusammenhang wurde die Rolle der putativen Carboanhydrase Nce103 durch die Generation von knock – out Mutanten untersucht. Die Disruption von NCE103 in C. albicans führt zu einem Kohlendioxid – abhängigen Phänotyp, welcher Wachstum unter aeroben Bedingungen (ca. 0,033% CO2) nicht zulässt, jedoch unter Bedingungen mit einem erhöhten CO2 Gehalt von ca. 5% ermöglicht. NCE103 ist also für das Wachstum von C. albicans in Wirtsnischen mit aeroben Bedingungen essentiell. Durch Untersuchungen zur Enzymkinetik mittels Stopped – flow wurde in dieser Arbeit gezeigt, dass Nce103 die Funktion einer Carboanhydrase erfüllt. Die biochemische Funktion dieser Carboanhydrase besteht in der Fixation von CO2 bzw. HCO3ˉ in der Zelle zur Unterhaltung der wesentlichen metabolischen Reaktionen. Weiterhin konnte gezeigt werden, dass die Induktion hyphalen Wachstums durch CO2 in C. albicans nicht durch den Transport von CO2 mittels des Aquaporins Aqy1 beeinflusst wird. CO2 bzw. HCO3ˉ aktiviert in der Zelle direkt eine Adenylylcyclase (Cdc35), welche sich grundlegend von den bisher gut charakterisierten G-Protein gekoppelten Adenylylcylasen unterscheidet. Die Generation von cAMP beeinflusst in der Folge direkt die Transkription hyphenspezifischer Gene und nachfolgend die morphologische Transition vom Hefewachstum zum elongierten, hyphalen Wachstum. Dieser Mechanismus konnte sowohl in Candida albicans als auch in Cryptococcus neoformans nachgewiesen werden, was auf einen panfungal konservierten Signaltransduktionsmechanismus schliessen lässt. Die Inhibition dieser spezifischen Kaskade eröffnet neue Ansätze zur Entwicklung spezifischer antimykotischer Wirkstoffe. / Detection of environmental signals and subsequently directed reaction is essential for the survival of all living organisms. Candida albicans, as the predominant human fungal pathogen is exposed to severely different physical and chemical conditions, which influence cell morphology as well as virulence in human. In the present work, the influence of carbon dioxide as ubiquitous gaseous molecule on virulence and cell morphology was analysed. Elevated concentrations of carbon dioxide are a robust signal to induce the morphological transition from yeast growth to an elongated hyphal growth form, which is believed to be one of the main virulence factors in Candida albicans. The role of the putative carbonic anhydrase Nce103p in carbon dioxide signalling is reviewed by generating knockout mutant strains, which exhibited a carbon dioxide dependent phenotype. Growth under aerobic conditions (0,033 % carbon dioxide) is inhibited but feasible in 5% carbon dioxide. Therefore, Nce103p is essential for growth in host niches with aerobic conditions. Analysis of the biochemical properties of Nce103p by stopped – flow kinetics revealed carbonic anhydrase activity. It is hypothesised, that Nce103p is essential for fixation of carbon dioxide and bicarbonate within the cell in order to sustain basic metabolic reactions. Furthermore, the induction of hyphal growth was independent of aquaporine-mediated transport of carbon dioxide. Bicarbonate rather carbon dioxide activates directly the adenylyl cyclase Cdc35p generating cyclic AMP as second messenger and influencing the transcription of hyphal specific genes in Candida albicans thus promoting the morphological transition from yeast growth to elongated hyphal growth. This signal transduction cascade is present in Candida albicans as well as Cryptococcus neoformans and it is believed to be a pan fungal signal transduction cascade. The specific inhibition of carbon dioxide mediated polymorphism may serve as a new target for antifungal therapeutic agents.
2

Effect of fatty acids on hyphal growth in the pathogenic yeast Candida albicans

Shareck, Julie 09 1900 (has links)
Candida albicans est une levure pathogène qui, à l’état commensal, colonise les muqueuses de la cavité orale et du tractus gastro-intestinal. De nature opportuniste, C. albicans cause de nombreuses infections, allant des candidoses superficielles (muguet buccal, vulvo-vaginite) aux candidoses systémiques sévères. C. albicans a la capacité de se développer sous diverses morphologies, telles que les formes levures, pseudohyphes et hyphes. Des stimuli environnementaux mimant les conditions retrouvées chez l’hôte (température de 37°C, pH neutre, présence de sérum) induisent la transition levure-à-hyphe (i.e. morphogenèse ou filamentation). Cette transition morphologique contribue à la pathogénicité de C. albicans, du fait que des souches présentant un défaut de filamentation sont avirulentes. Non seulement la morphogenèse est un facteur de virulence, mais elle constituerait aussi une cible pour le développement d’antifongiques. En effet, il a déjà été démontré que l’inhibition de la transition levure-à-hyphe atténuait la virulence de C. albicans lors d’infections systémiques. Par ailleurs, des études ont démontré que de nombreuses molécules pouvaient moduler la morphogenèse. Parmi ces molécules, certains acides gras, dont l’acide linoléique conjugué (CLA), inhibent la formation d’hyphes. Ainsi, le CLA posséderait des propriétés thérapeutiques, du fait qu’il interfère avec un déterminant de pathogénicité de C. albicans. Par contre, avant d’évaluer son potentiel thérapeutique dans un contexte clinique, il est essentiel d’étudier son mode d’action. Ce projet vise à caractériser l’activité anti-filamentation des acides gras et du CLA et à déterminer le mécanisme par lequel ces molécules inhibent la morphogenèse chez C. albicans. Des analyses transcriptomiques globales ont été effectuées afin d’obtenir le profil transcriptionnel de la réponse de C. albicans au CLA. L’acide gras a entraîné une baisse des niveaux d’expression de gènes encodant des protéines hyphes-spécifiques et des régulateurs de morphogenèse, dont RAS1. Ce gène code pour la GTPase Ras1p, une protéine membranaire de signalisation qui joue un rôle important dans la transition levure-à-hyphe. Des analyses de PCR quantitatif ont confirmé que le CLA inhibait l’induction de RAS1. De plus, le CLA a non seulement causé une baisse des niveaux cellulaires de Ras1p, mais a aussi entraîné sa délocalisation de la membrane plasmique. En affectant les niveaux et la localisation cellulaire de Ras1p, le CLA nuit à l’activation de la voie de signalisation Ras1p-dépendante, inhibant ainsi la morphogenèse. Il est possible que le CLA altère la structure de la membrane plasmique et affecte indirectement la localisation membranaire de Ras1p. Ces travaux ont permis de mettre en évidence le mode d’action du CLA. Le potentiel thérapeutique du CLA pourrait maintenant être évalué dans un contexte d’infection, permettant ainsi de vérifier qu’une telle approche constitue véritablement une stratégie pour le traitement des candidoses. / The yeast Candida albicans is an inhabitant of the oral cavity, the gastrointestinal and genitourinary tracts of humans. Generally encountered as a commensal, it is also an opportunistic pathogen that causes a spectrum of infections, ranging from superficial mycoses (thrush, vulvovaginitis) to severe and life-threatening systemic infections. A striking feature of C. albicans is its ability to grow in different morphological forms, including budding yeasts, pseudohyphae, and hyphae. Environmental cues that mimic host conditions (elevated temperature, neutral or alkaline pH, and serum) induce the yeast-to-hypha transition. Morphogenesis is considered to be an attribute of pathogenesis, as mutants locked as yeasts or filamentous forms are avirulent. Given that the yeast-to-hypha transition is a virulence factor, it may also constitute a target for the development of antifungal drugs. Indeed, evidence has shown that impairing morphogenesis is a means to treat systemic candidiasis. Concurrently, a number of molecules have been reported to modulate morphogenesis in C. albicans. For instance, several fatty acids, including conjugated linoleic acid (CLA), inhibited the yeast-to-hypha transition. By interfering with an important attribute of C. albicans pathogenesis, CLA may harbor antifungal properties. However, before assessing its therapeutic potential in a clinical context, it is mandatory to address CLA’s mode of action. The present study aims to further characterize the hypha-inhibiting properties of fatty acids and CLA and to elucidate the mechanism by which these molecules inhibit the yeast-to-hypha transition in C. albicans. Gene expression analyses were performed to gain insight into the transcriptional response of cells to CLA on a genome-wide scale and to probe the fatty acid’s mode of action. CLA downregulated the expression of hypha-specific genes and blocked the induction of genes encoding regulators of hyphal growth, including that of RAS1, which encodes the small GTPase Ras1p. A membrane-associated signaling protein, Ras1p plays a major role in morphogenesis. Quantitative PCR analyses showed that CLA prevented the increase in RAS1 mRNA levels which occurred at the onset of the yeast-to-hypha transition. Unexpectedly, CLA reduced the steady-state levels of Ras1p. Additionally, CLA caused the delocalization of GFP-Ras1p from the plasma membrane. These findings indicate that CLA treatment results in suboptimal Ras1p cellular concentrations and localization, which impedes Ras1p signaling and inhibits the yeast-to-hypha transition. CLA may indirectly affect Ras1p localization by altering the structure of the plasma membrane. These studies have provided the mechanism underlying CLA’s hypha-inhibiting properties and may serve as the rationale to examine CLA’s therapeutic potential in the context of a Candida infection. There is a general lack of clinical evidence demonstrating that impairing morphogenesis is a sound approach to treat candidiasis. To remedy this situation, the therapeutic potential of molecules that modulate morphogenesis, such as CLA, should be clinically assessed.
3

Contribution à l'étude phytochimique de Solidago virgaurea : application dans le domaine bucco-dentaire et étude de la variabilité phytochimique pour la création d'une filière / Contribution to the phytochemical study of Solidago virgaurea

Laurençon, Lise 12 April 2013 (has links)
Dans le but de valoriser la biodiversité végétale des Alpes-Maritimes, une plante commune dans cette région, Solidago virgaurea, a été sélectionnée pour son potentiel inhibiteur de la conversion levure-hyphe de Candida albicans, micro-organisme responsable d’infections bucco-dentaires de type candidose. Le fractionnement bioguidé de l’extrait aqueux a conduit à l’identification d’une famille de saponines particulièrement active. Parmi les onze saponines majoritaires caractérisées par RMN et HRMS, cinq se sont révélées être de nouvelles structures. Les tests biologiques ont néanmoins montré qu’elles n’étaient pas toutes actives contre la forme filamenteuse de C. albicans. Ces résultats ont conduit à une étude de la variabilité de la composition en saponines de plusieurs populations alpines de S. virgaurea. Trois méthodes de dosage des saponines ont été développées par HPLC et HPTLC. Les résultats ont démontré l'influence de différents facteurs sur la composition en saponines. Enfin, la composition globale de différents extraits de S. virgaurea a été étudiée dans le but d'identifier des activités biologiques complémentaires. Parmi les composés identifiés, trois nouveaux acides octulosoniques ont été caractérisés, aux côtés de trois composés phénoliques identifiés pour la première fois chez S. virgaurea. Les tests biologiques sur les extraits et fractions ont par ailleurs mis en évidence des activités antioxydante, anti-tyrosinase et inhibitrice de cellules cancéreuses in vitro. Ces tests devront être approfondis ultérieurement. / Toward the promotion of plant diversity of Maritime Alps, a common plant of the alpine area, Solidago virgaurea, was chosen to its inhibiting activity of Candida albicans yeast-hyphal conversion, a causal agent of opportunistic oral infections named candidiasis. In a first step, an aqueous extract of S. virgaurea was submitted to bioassay guided fractionation. This led to an active saponin-containing fraction from which eleven saponins were characterized by carrying out NMR experiments along with HRMS analyses. Five out of these were identified for the first time and bioassays showed that saponins activity varied according to the molecular structure of the compound. In a second step, the saponins composition of various S. virgaurea populations was studied qualitatively and quantitatively, using HPLC and HPTLC. Results demonstrated that saponins composition depends on various factors. Finally, the overall chemical composition of different S. virgaurea extracts was investigated searching for additional bioactivities. Among all the identified compounds, three new octulosonic acids were characterized and three phenolic compounds were found for the first time in S. virgaurea. Moreover, bioassays on extracts and fractions showed antioxidant, anti-tyrosinase activity and inhibition of cancer cell lines in vitro. Further bioassays have now to be completed. As a conclusion, this work was the starting point of an oral care product development and the setting-up of an innovative sector.
4

Effect of fatty acids on hyphal growth in the pathogenic yeast Candida albicans

Shareck, Julie 09 1900 (has links)
Candida albicans est une levure pathogène qui, à l’état commensal, colonise les muqueuses de la cavité orale et du tractus gastro-intestinal. De nature opportuniste, C. albicans cause de nombreuses infections, allant des candidoses superficielles (muguet buccal, vulvo-vaginite) aux candidoses systémiques sévères. C. albicans a la capacité de se développer sous diverses morphologies, telles que les formes levures, pseudohyphes et hyphes. Des stimuli environnementaux mimant les conditions retrouvées chez l’hôte (température de 37°C, pH neutre, présence de sérum) induisent la transition levure-à-hyphe (i.e. morphogenèse ou filamentation). Cette transition morphologique contribue à la pathogénicité de C. albicans, du fait que des souches présentant un défaut de filamentation sont avirulentes. Non seulement la morphogenèse est un facteur de virulence, mais elle constituerait aussi une cible pour le développement d’antifongiques. En effet, il a déjà été démontré que l’inhibition de la transition levure-à-hyphe atténuait la virulence de C. albicans lors d’infections systémiques. Par ailleurs, des études ont démontré que de nombreuses molécules pouvaient moduler la morphogenèse. Parmi ces molécules, certains acides gras, dont l’acide linoléique conjugué (CLA), inhibent la formation d’hyphes. Ainsi, le CLA posséderait des propriétés thérapeutiques, du fait qu’il interfère avec un déterminant de pathogénicité de C. albicans. Par contre, avant d’évaluer son potentiel thérapeutique dans un contexte clinique, il est essentiel d’étudier son mode d’action. Ce projet vise à caractériser l’activité anti-filamentation des acides gras et du CLA et à déterminer le mécanisme par lequel ces molécules inhibent la morphogenèse chez C. albicans. Des analyses transcriptomiques globales ont été effectuées afin d’obtenir le profil transcriptionnel de la réponse de C. albicans au CLA. L’acide gras a entraîné une baisse des niveaux d’expression de gènes encodant des protéines hyphes-spécifiques et des régulateurs de morphogenèse, dont RAS1. Ce gène code pour la GTPase Ras1p, une protéine membranaire de signalisation qui joue un rôle important dans la transition levure-à-hyphe. Des analyses de PCR quantitatif ont confirmé que le CLA inhibait l’induction de RAS1. De plus, le CLA a non seulement causé une baisse des niveaux cellulaires de Ras1p, mais a aussi entraîné sa délocalisation de la membrane plasmique. En affectant les niveaux et la localisation cellulaire de Ras1p, le CLA nuit à l’activation de la voie de signalisation Ras1p-dépendante, inhibant ainsi la morphogenèse. Il est possible que le CLA altère la structure de la membrane plasmique et affecte indirectement la localisation membranaire de Ras1p. Ces travaux ont permis de mettre en évidence le mode d’action du CLA. Le potentiel thérapeutique du CLA pourrait maintenant être évalué dans un contexte d’infection, permettant ainsi de vérifier qu’une telle approche constitue véritablement une stratégie pour le traitement des candidoses. / The yeast Candida albicans is an inhabitant of the oral cavity, the gastrointestinal and genitourinary tracts of humans. Generally encountered as a commensal, it is also an opportunistic pathogen that causes a spectrum of infections, ranging from superficial mycoses (thrush, vulvovaginitis) to severe and life-threatening systemic infections. A striking feature of C. albicans is its ability to grow in different morphological forms, including budding yeasts, pseudohyphae, and hyphae. Environmental cues that mimic host conditions (elevated temperature, neutral or alkaline pH, and serum) induce the yeast-to-hypha transition. Morphogenesis is considered to be an attribute of pathogenesis, as mutants locked as yeasts or filamentous forms are avirulent. Given that the yeast-to-hypha transition is a virulence factor, it may also constitute a target for the development of antifungal drugs. Indeed, evidence has shown that impairing morphogenesis is a means to treat systemic candidiasis. Concurrently, a number of molecules have been reported to modulate morphogenesis in C. albicans. For instance, several fatty acids, including conjugated linoleic acid (CLA), inhibited the yeast-to-hypha transition. By interfering with an important attribute of C. albicans pathogenesis, CLA may harbor antifungal properties. However, before assessing its therapeutic potential in a clinical context, it is mandatory to address CLA’s mode of action. The present study aims to further characterize the hypha-inhibiting properties of fatty acids and CLA and to elucidate the mechanism by which these molecules inhibit the yeast-to-hypha transition in C. albicans. Gene expression analyses were performed to gain insight into the transcriptional response of cells to CLA on a genome-wide scale and to probe the fatty acid’s mode of action. CLA downregulated the expression of hypha-specific genes and blocked the induction of genes encoding regulators of hyphal growth, including that of RAS1, which encodes the small GTPase Ras1p. A membrane-associated signaling protein, Ras1p plays a major role in morphogenesis. Quantitative PCR analyses showed that CLA prevented the increase in RAS1 mRNA levels which occurred at the onset of the yeast-to-hypha transition. Unexpectedly, CLA reduced the steady-state levels of Ras1p. Additionally, CLA caused the delocalization of GFP-Ras1p from the plasma membrane. These findings indicate that CLA treatment results in suboptimal Ras1p cellular concentrations and localization, which impedes Ras1p signaling and inhibits the yeast-to-hypha transition. CLA may indirectly affect Ras1p localization by altering the structure of the plasma membrane. These studies have provided the mechanism underlying CLA’s hypha-inhibiting properties and may serve as the rationale to examine CLA’s therapeutic potential in the context of a Candida infection. There is a general lack of clinical evidence demonstrating that impairing morphogenesis is a sound approach to treat candidiasis. To remedy this situation, the therapeutic potential of molecules that modulate morphogenesis, such as CLA, should be clinically assessed.

Page generated in 0.0391 seconds