• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 13
  • 12
  • 8
  • 8
  • 7
  • 6
  • 1
  • 1
  • Tagged with
  • 145
  • 145
  • 37
  • 29
  • 28
  • 25
  • 24
  • 21
  • 20
  • 19
  • 17
  • 16
  • 16
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Application of active inductors in high-speed I/O circuits

Lee, Yen-Sung Michael 11 1900 (has links)
This thesis explores the use of active inductors as a compact alternative to the bulky passive spiral structures in high-speed I/O circuits. A newly proposed PMOS-based topology is introduced and used in active-inductor terminations. The 1st prototype design fabricated in a 90-nm CMOS process consists of an output driver using active-inductor terminations to provide channel equalization and output impedance matching. From measurement results, the use of active inductors in the termination, as compared to when the active inductor is disabled, increases the vertical eye opening in the receiver side by a factor of two and reduces the jitterp-p by 30% of the transmitted 10 Gb/s (2³¹-1) pseudo-random binary sequence pattern, over a 6-inch FR4 channel. An output impedance matching with S₂₂ less than -10 dB over a bandwidth of 20 GHz is achieved. The pair of active-inductor terminations occupies 17×25 µm² and has a low overhead power consumption of 0.8 mW. In the 2nd prototype design, a 4-stage output buffer with active-inductor loads is designed and implemented in a 65-nm CMOS process. Simulation results verify that when operating at 31.25 Gb/s, the output eye of the active-inductor load buffer compares favorably with that of the passive-inductor load buffer. For a similar eye-height and 78% less timing jitter the active-inductor load design’s speed (31.25 Gb/s) is 25% faster than the passive-resistor load design (25 Gb/s). The active-inductor load output buffer achieves comparable performance in terms of speed, power, and output swing with other reported designs using passive inductors. Its total area is 135×30 µm² (including three differential active inductors) which is comparable to the size of a single passive spiral inductor having a 0.5~1 nH inductance.
12

Evaluating I/O scheduling techniques at the forwarding layer and coordinating data server accesses / Avaliação de técnicas de escalonamento de E/S na camada de encaminhamento e coordenação de acesso aos servidores de dados

Bez, Jean Luca January 2016 (has links)
Em ambientes de Computação de Alto Desempenho, as aplicações científicas dependem dos Sistemas de Arquivos Paralelos (SAP) para obter desempenho de Entrada/Saída (E/S), especialmente ao lidar com grandes quantidades de dados. No entanto, E/S ainda é um gargalo para um número crescente de aplicações, devido à diferença histórica entre a velocidade de processamento e de acesso aos dados. Para aliviar a concorrência causada por milhares de nós que acessam um número significativamente menor de servidores SAP, normalmente nós intermediários de E/S são adicionados entre os nós de processamento e o sistema de arquivos. Cada nó intermediário encaminha solicitações de vários clientes para o sistema, uma configuração que dá a este componente a oportunidade de executar otimizações como o escalonamento de requisições de E/S. O objetivo desta dissertação é avaliar diferentes algoritmos de escalonamento, na camada de encaminhamento de E/S, cuja finalidade é melhorar o padrão de acesso das aplicações, agregando e reordenando requisições para evitar padrões que são conhecidos por prejudicar o desempenho. Demonstramos que os escalonadores FIFO (First In, First Out), HBRR (Handle-Based Round-Robin), TO (Time Order), SJF (Shortest Job First) e MLF (Multilevel Feedback) são apenas parcialmente eficazes porque o padrão de acesso não é o principal fator que afeta o desempenho na camada de encaminhamento de E/S, especialmente para requisições de leitura Um novo algoritmo de escalonamento chamado TWINS é proposto para coordenar o acesso de nós intermediários de E/S aos servidores de dados do sistema de arquivos paralelo. Nossa abordagem reduz a concorrência nos servidores de dados, um fator previamente demonstrado como reponsável por afetar negativamente o desempenho. O algoritmo proposto é capaz de melhorar o tempo de leitura de arquivos compartilhados em até 28% se comparado a outros algoritmos de escalonamento e em até 50% se comparado a não fazer o encaminhamento de requisições de E/S. / In High Performance Computing (HPC) environments, scientific applications rely on Parallel File Systems (PFS) to obtain Input/Output (I/O) performance especially when handling large amounts of data. However, I/O is still a bottleneck for an increasing number of applications, due to the historical gap between processing and data access speed. To alleviate the concurrency caused by thousands of nodes accessing a significantly smaller number of PFS servers, intermediate I/O nodes are typically employed between processing nodes and the file system. Each intermediate node forwards requests from multiple clients to the parallel file system, a setup which gives this component the opportunity to perform optimizations like I/O scheduling. The objective of this dissertation is to evaluate different scheduling algorithms, at the I/O forwarding layer, that work to improve concurrent access patterns by aggregating and reordering requests to avoid patterns known to harm performance. We demonstrate that the FIFO (First In, First Out), HBRR (Handle- Based Round-Robin), TO (Time Order), SJF (Shortest Job First) and MLF (Multilevel Feedback) schedulers are only partially effective because the access pattern is not the main factor that affects performance in the I/O forwarding layer, especially for read requests. A new scheduling algorithm, TWINS, is proposed to coordinate the access of intermediate I/O nodes to the parallel file system data servers. Our approach decreases concurrency at the data servers, a factor previously proven to negatively affect performance. The proposed algorithm is able to improve read performance from shared files by up to 28% over other scheduling algorithms and by up to 50% over not forwarding I/O requests.
13

Evaluating I/O scheduling techniques at the forwarding layer and coordinating data server accesses / Avaliação de técnicas de escalonamento de E/S na camada de encaminhamento e coordenação de acesso aos servidores de dados

Bez, Jean Luca January 2016 (has links)
Em ambientes de Computação de Alto Desempenho, as aplicações científicas dependem dos Sistemas de Arquivos Paralelos (SAP) para obter desempenho de Entrada/Saída (E/S), especialmente ao lidar com grandes quantidades de dados. No entanto, E/S ainda é um gargalo para um número crescente de aplicações, devido à diferença histórica entre a velocidade de processamento e de acesso aos dados. Para aliviar a concorrência causada por milhares de nós que acessam um número significativamente menor de servidores SAP, normalmente nós intermediários de E/S são adicionados entre os nós de processamento e o sistema de arquivos. Cada nó intermediário encaminha solicitações de vários clientes para o sistema, uma configuração que dá a este componente a oportunidade de executar otimizações como o escalonamento de requisições de E/S. O objetivo desta dissertação é avaliar diferentes algoritmos de escalonamento, na camada de encaminhamento de E/S, cuja finalidade é melhorar o padrão de acesso das aplicações, agregando e reordenando requisições para evitar padrões que são conhecidos por prejudicar o desempenho. Demonstramos que os escalonadores FIFO (First In, First Out), HBRR (Handle-Based Round-Robin), TO (Time Order), SJF (Shortest Job First) e MLF (Multilevel Feedback) são apenas parcialmente eficazes porque o padrão de acesso não é o principal fator que afeta o desempenho na camada de encaminhamento de E/S, especialmente para requisições de leitura Um novo algoritmo de escalonamento chamado TWINS é proposto para coordenar o acesso de nós intermediários de E/S aos servidores de dados do sistema de arquivos paralelo. Nossa abordagem reduz a concorrência nos servidores de dados, um fator previamente demonstrado como reponsável por afetar negativamente o desempenho. O algoritmo proposto é capaz de melhorar o tempo de leitura de arquivos compartilhados em até 28% se comparado a outros algoritmos de escalonamento e em até 50% se comparado a não fazer o encaminhamento de requisições de E/S. / In High Performance Computing (HPC) environments, scientific applications rely on Parallel File Systems (PFS) to obtain Input/Output (I/O) performance especially when handling large amounts of data. However, I/O is still a bottleneck for an increasing number of applications, due to the historical gap between processing and data access speed. To alleviate the concurrency caused by thousands of nodes accessing a significantly smaller number of PFS servers, intermediate I/O nodes are typically employed between processing nodes and the file system. Each intermediate node forwards requests from multiple clients to the parallel file system, a setup which gives this component the opportunity to perform optimizations like I/O scheduling. The objective of this dissertation is to evaluate different scheduling algorithms, at the I/O forwarding layer, that work to improve concurrent access patterns by aggregating and reordering requests to avoid patterns known to harm performance. We demonstrate that the FIFO (First In, First Out), HBRR (Handle- Based Round-Robin), TO (Time Order), SJF (Shortest Job First) and MLF (Multilevel Feedback) schedulers are only partially effective because the access pattern is not the main factor that affects performance in the I/O forwarding layer, especially for read requests. A new scheduling algorithm, TWINS, is proposed to coordinate the access of intermediate I/O nodes to the parallel file system data servers. Our approach decreases concurrency at the data servers, a factor previously proven to negatively affect performance. The proposed algorithm is able to improve read performance from shared files by up to 28% over other scheduling algorithms and by up to 50% over not forwarding I/O requests.
14

Application of active inductors in high-speed I/O circuits

Lee, Yen-Sung Michael 11 1900 (has links)
This thesis explores the use of active inductors as a compact alternative to the bulky passive spiral structures in high-speed I/O circuits. A newly proposed PMOS-based topology is introduced and used in active-inductor terminations. The 1st prototype design fabricated in a 90-nm CMOS process consists of an output driver using active-inductor terminations to provide channel equalization and output impedance matching. From measurement results, the use of active inductors in the termination, as compared to when the active inductor is disabled, increases the vertical eye opening in the receiver side by a factor of two and reduces the jitterp-p by 30% of the transmitted 10 Gb/s (2³¹-1) pseudo-random binary sequence pattern, over a 6-inch FR4 channel. An output impedance matching with S₂₂ less than -10 dB over a bandwidth of 20 GHz is achieved. The pair of active-inductor terminations occupies 17×25 µm² and has a low overhead power consumption of 0.8 mW. In the 2nd prototype design, a 4-stage output buffer with active-inductor loads is designed and implemented in a 65-nm CMOS process. Simulation results verify that when operating at 31.25 Gb/s, the output eye of the active-inductor load buffer compares favorably with that of the passive-inductor load buffer. For a similar eye-height and 78% less timing jitter the active-inductor load design’s speed (31.25 Gb/s) is 25% faster than the passive-resistor load design (25 Gb/s). The active-inductor load output buffer achieves comparable performance in terms of speed, power, and output swing with other reported designs using passive inductors. Its total area is 135×30 µm² (including three differential active inductors) which is comparable to the size of a single passive spiral inductor having a 0.5~1 nH inductance. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
15

Equations for timing calculations for tiny basic and pet basic programs

Alluri, Krishnamraju V. January 1981 (has links)
No description available.
16

Innovative Technologien im Data Center

Müller, Thomas 02 June 2009 (has links) (PDF)
Vorgestellt wird die Architektur des Data Centers der TU Chemnitz, die auf den neuen Technologie Data Center Bridging (DCB) und Fibre Channel over Ethernet (FCoE) basiert. Es werden die entsprechenden Standards dargestellt und ein Überblick zur gegenwärtig verfügbaren Technik gegeben. Das Rechenzentrum der TU Chemnitz setzt diese Technologien bereits erfolgreich im Kontext von VMware-Virtualisierung und bei Betrieb I/O-intensiver Systeme ein.
17

Personal Positioning and Navigation System Based on GPS

Song, Yajun, Zhang, Qishan 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / The Global Positioning System (GPS) is a very accurate, all-weather, world wide three dimensional navigation system and it has been used in almost every field related to positioning and navigation. This paper presents a new application of GPS technology - personal positioning and navigation system. It combines VP ONCORE receiver OEM (Original Equipment Manufacture) board and an intelligent system controller, with a keyboard and a programmable LCD as its peripherals. This system can realize rich navigation functions and satisfy the need of personal use.
18

Resource management in open tuple space systems

Menezes, Ronaldo Parente de January 1999 (has links)
No description available.
19

Implementering av höghastighetsgränssnitt i 0,15 µm halvledarprocess / Implementation of high speed interface in 0,15 µm semiconductor process

Sjögren, Peter January 2002 (has links)
This study investigated the possibility of implementing three standards, Transistion Minimized Differential Signaling (TMDS) and two versions of Stub Series Terminated Logic (SSTL), for inter-chip communication in a specific manufacturing process. The two SSTL standards were implemented in one transceiver system while TMDS was implemented in a separate system. The evaluation was done with Spice simulations on schematic level with some parasitic capacitance and resistance. The idea was to investigate the possibility of implementing these standards and get an idea of eventual shortcomings. In order to create models as a basis for evaluation, simulation environments with models for circuit board and packages were created and transmitters and receivers were designed. During verification, variations in the process and different conditions as temperatureand voltages were considered. Some simplifications were made. All resistors have been assumed ideal and so have bias currents and bias voltages. Further more, parasitics from wires and other objects were missing due to the fact that the netlists came from electrical design and were not extracted from layout. The results showed that it is possible to implement SSTL in the desired semiconductor process. And so is the TMDS receiver. However some questions about the TMDS transmitter remain. Firstly, I see no theoretical possibility to get as short rise and fall time, with the specified load, as stated in the standard. Secondly, the opening in the eye diagram is large and has a good margin but when designing a TMDS transmitter one has to be careful in order to avoid overshoot. Apart from that, package and circuitboard has to be chosen so that they do not limit the system.
20

Design and Implementation of One-time Implantable Spinal Cord Stimulation System

Hsu, Chia-Hao 07 July 2012 (has links)
A prototype of a one-time implantable spinal cord stimulation (SCS) system is presented in this thesis. A pair of inductive coils is used to achieve wireless power transmission and bidirectional communication. A rechargeable Li-ion battery is used to extend the lifetime of the implanted SCS device. Therefore, the number of the battery replacement surgery could be reduced such that one-time implantation is feasible. Besides, the proposed system on chip (SOC) controller and many discretes are integrated on a printed circuit board (PCB). The size of the proposed SCS device is competitive compared to the currently commercial products. The proposed SOC controller adopts a dual supply voltage scheme to reduce power consumption. The proposed SCS system employs an amplitude-shift keying (ASK) technique to carry out the data modulation and power transmission. One of the critical factors to affect efficiency of ASK-based wireless power transmission is the oscillating frequency accuracy. A ROM-less direct digital frequency synthesizer (DDFS) is presented in this thesis to fulfill such a high accuracy demand. Since the supply voltages of the discretes are diversified on a system PCB, many level converters are needed to translate different signal output voltage levels. To resolve above problem, the chip, then, must be redesigned to meet the various voltage level requirement, or added level convertors among the SOC and the discretes. Obviously, it will cause a lot of cost. A wide-range I/O buffer, thus, is proposed to resolve the compatibility problem caused by different supply voltages of discretes.

Page generated in 0.0282 seconds