• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Growth and Characterization of ZnSe and ZnTe Alloy Nanowires

Li, Zhong 06 December 2012 (has links)
The objective of this thesis is to explore the synthesis and characterization of high quality binary ZnTe nanowires with great potential for development of optoelectronic devices including high efficiency photovoltaic cells for energy conversion and high sensitivity photodetectors for green fluorescent protein bioimaging at single molecule level. To systematically explore the fabrication process for high quality nanowires, a chemical vapour deposition system was built for nanowire growth. Computational fluid dynamics simulations were used to optimize the reactor and growth parameters. The simulations were validated by experimental measurements. Room temperature photoluminescence measurements showed that high crystal quality with very low defects by single step growth was achieved. This single step growth technique makes a great improvement compared to the reported growth followed by annealing, which achieved equivalent crystal quality. This simplification could be of use in large scale synthesis of nanowires. The simulation results also showed that reactant species concentration is a key factor influencing the growth. A metal-organic chemical vapour deposition system was thus built to independently control reactant concentrations for ZnTe nanowire growth. Temperature-dependent photoluminescence measurements of as-grown ZnTe nanowires showed a strong near band-edge emission. In addition, a deep level oxygen-related band was observed for the first time. From the detailed analysis of thermal quenching of the photoluminescence, it was shown that the deep level emission was partially from the intermediate band of the material. This is of great importance due to the theoretical absorption efficiency that is as high as 63% for intermediate band materials, which is more than two times of that of current single junction concentrators, and few materials possessing this property. Individual ZnTe nanowires, grown after optimization, were patterned and contacted, and their conductivity and photoconductivity were measured at room temperature. A single ZnTe nanowire serving as a photodetector was shown to have the highest reported visible responsivity of 360 A/W (at 530 nm), and a gain of 8,640 (at 3 V bias). The responsivity is roughly 18 times higher than that of silicon avalanche photodiodes. This demonstrates that ZnTe nanowires are strong candidates for single photon detection.
2

Growth and Characterization of ZnSe and ZnTe Alloy Nanowires

Li, Zhong 06 December 2012 (has links)
The objective of this thesis is to explore the synthesis and characterization of high quality binary ZnTe nanowires with great potential for development of optoelectronic devices including high efficiency photovoltaic cells for energy conversion and high sensitivity photodetectors for green fluorescent protein bioimaging at single molecule level. To systematically explore the fabrication process for high quality nanowires, a chemical vapour deposition system was built for nanowire growth. Computational fluid dynamics simulations were used to optimize the reactor and growth parameters. The simulations were validated by experimental measurements. Room temperature photoluminescence measurements showed that high crystal quality with very low defects by single step growth was achieved. This single step growth technique makes a great improvement compared to the reported growth followed by annealing, which achieved equivalent crystal quality. This simplification could be of use in large scale synthesis of nanowires. The simulation results also showed that reactant species concentration is a key factor influencing the growth. A metal-organic chemical vapour deposition system was thus built to independently control reactant concentrations for ZnTe nanowire growth. Temperature-dependent photoluminescence measurements of as-grown ZnTe nanowires showed a strong near band-edge emission. In addition, a deep level oxygen-related band was observed for the first time. From the detailed analysis of thermal quenching of the photoluminescence, it was shown that the deep level emission was partially from the intermediate band of the material. This is of great importance due to the theoretical absorption efficiency that is as high as 63% for intermediate band materials, which is more than two times of that of current single junction concentrators, and few materials possessing this property. Individual ZnTe nanowires, grown after optimization, were patterned and contacted, and their conductivity and photoconductivity were measured at room temperature. A single ZnTe nanowire serving as a photodetector was shown to have the highest reported visible responsivity of 360 A/W (at 530 nm), and a gain of 8,640 (at 3 V bias). The responsivity is roughly 18 times higher than that of silicon avalanche photodiodes. This demonstrates that ZnTe nanowires are strong candidates for single photon detection.
3

Characterization Of Large Area Cadmium Telluride Films And Solar Cells Deposited On Moving Substrates By Close Spaced Sublimation

Kumar, Vishwanath 12 November 2003 (has links)
With CdTe based photovoltaics developed by close spaced sublimation reaching efficiencies of over 16%, commercialization of this technology draws serious attention. Today large area industrial modules have not been able to produce the same performance of their laboratory counterparts. This work provides a means for understanding the various technical challenges in developing an effective deposition technology for large area processing. The submodule process investigated provides a model for continuous and sequential processing of subsequent films. The system has a unique design and constructed with the provision for a moving transport module for the substrate transport. The process was developed to deposit large area CdTe (3 x 3 sq. inch) and provides valuable insights for the development of a large area deposition system. Upon optimizing the system for reproducibility, proper deposition conditions were established. Films deposited under various conditions were studied to improve our understanding of the influence of processing conditions on device performance. The key advantage of this technique over others is its high deposition rate, simplicity of operation and high conversion efficiency. Typical deposition times were two minutes and could be reduced to as low as 45 sec with little variation in performance. The four major parameters that influence the films prepared by close spaced sublimation, namely substrate temperature, source temperature, ambient pressure, and spacing were optimized for best device performance. The influence of each parameter on deposition rate and cell efficiency was also studied. The best cells produced by this technology had an efficiency of 13% with Voc=830 mV, FF= 74% and Jsc=21.1 mA/cm2.
4

Characterization of large area cadmium telluride films and solar cells deposited on moving substrates by close spaced sublimation [electronic resource] / by Vishwanath Kumar.

Kumar, Vishwanath. January 2003 (has links)
Title from PDF of title page. / Document formatted into pages; contains 78 pages. / Thesis (M.S.E.E.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: With CdTe based photovoltaics developed by close spaced sublimation reaching efficiencies of over 16%, commercialization of this technology draws serious attention. Today large area industrial modules have not been able to produce the same performance of their laboratory counterparts. This work provides a means for understanding the various technical challenges in developing an effective deposition technology for large area processing. The submodule process investigated provides a model for continuous and sequential processing of subsequent films. The system has a unique design and constructed with the provision for a moving transport module for the substrate transport. The process was developed to deposit large area CdTe (3 x 3 sq. inch) and provides valuable insights for the development of a large area deposition system. Upon optimizing the system for reproducibility, proper deposition conditions were established. / ABSTRACT: Films deposited under various conditions were studied to improve our understanding of the influence of processing conditions on device performance. The key advantage of this technique over others is its high deposition rate, simplicity of operation and high conversion efficiency. Typical deposition times were two minutes and could be reduced to as low as 45 sec with little variation in performance. The four major parameters that influence the films prepared by close spaced sublimation, namely substrate temperature, source temperature, ambient pressure, and spacing were optimized for best device performance. The influence of each parameter on deposition rate and cell efficiency was also studied. The best cells produced by this technology had an efficiency of 13% with Voc=830 mV, FF= 74% and Jsc=21.1 mA/cm2. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
5

Conversion of a Molecular Beam Epitaxy System for the Growth of 6.1 Angstrom Semiconductors

January 2012 (has links)
abstract: A dual chamber molecular beam epitaxy (MBE) system was rebuilt for the growth of 6.1 Angstrom II-VI and III-V compound semiconductor materials that are to be used in novel optoelectronic devices that take advantage of the nearly continuous bandgap availability between 0 eV and 3.4 eV. These devices include multijunction solar cells and multicolor detectors. The MBE system upgrade involved the conversion of a former III-V chamber for II-VI growth. This required intensive cleaning of the chamber and components to prevent contamination. Special features including valved II-VI sources and the addition of a cold trap allowed for the full system to be baked to 200 degrees Celsius to improve vacuum conditions and reduce background impurity concentrations in epilayers. After the conversion, the system was carefully calibrated and optimized for the growth of ZnSe and ZnTe on GaAs (001) substrates. Material quality was assessed using X-ray diffraction rocking curves. ZnSe layers displayed a trend of improving quality with decreasing growth temperature reaching a minimum full-width half-maximum (FWHM) of 113 arcsec at 278 degrees Celsius. ZnTe epilayer quality increased with growth temperature under Zn rich conditions attaining a FWHM of 84 arcsec at 440 degrees Celsius. RHEED oscillations were successfully observed and used to obtain growth rate in situ for varying flux and temperature levels. For a fixed flux ratio, growth rate decreased with growth temperature as the desorption rate increased. A directly proportional dependence of growth rate on Te flux was observed for Zn rich growth. Furthermore, a method for determining the flux ratio necessary for attaining the stoichiometric condition was demonstrated. / Dissertation/Thesis / M.S. Electrical Engineering 2012
6

Monocrystalline ZnTe/CdTe/MgCdTe Double Heterostructure Solar Cells Grown on InSb Substrates by Molecular Beam Epitaxy

January 2014 (has links)
abstract: There has been recent interest in demonstrating solar cells which approach the detailed-balance or thermodynamic efficiency limit in order to establish a model system for which mass-produced solar cells can be designed. Polycrystalline CdS/CdTe heterostructures are currently one of many competing solar cell material systems. Despite being polycrystalline, efficiencies up to 21 % have been demonstrated by the company First Solar. However, this efficiency is still far from the detailed-balance limit of 32.1 % for CdTe. This work explores the use of monocrystalline CdTe/MgCdTe and ZnTe/CdTe/MgCdTe double heterostructures (DHs) grown on (001) InSb substrates by molecular beam epitaxy (MBE) for photovoltaic applications. Undoped CdTe/MgCdTe DHs are first grown in order to determine the material quality of the CdTe epilayer and to optimize the growth conditions. DH samples show strong photoluminescence with over double the intensity as that of a GaAs/AlGaAs DH with an identical layer structure. Time-resolved photoluminescence of the CdTe/MgCdTe DH gives a carrier lifetime of up to 179 ns for a 2 µm thick CdTe layer, which is more than one order of magnitude longer than that of polycrystalline CdTe films. MgCdTe barrier layers are found to be effective at confining photogenerated carriers and have a relatively low interface recombination velocity of 461 cm/s. The optimal growth temperature and Cd/Te flux ratio is determined to be 265 °C and 1.5, respectively. Monocrystalline ZnTe/CdTe/MgCdTe P-n-N DH solar cells are designed, grown, processed into solar cell devices, and characterized. A maximum efficiency of 6.11 % is demonstrated for samples without an anti-reflection coating. The low efficiency is mainly due to the low open-circuit voltage (V<sub>oc</sub>), which is attributed to high dark current caused by interface recombination at the ZnTe/CdTe interface. Low-temperature measurements show a linear increase in V<sub>oc</sub> with decreasing temperature down to 77 K, which suggests that the room-temperature operation is limited by non-radiative recombination. An open-circuit voltage of 1.22 V and an efficiency of 8.46 % is demonstrated at 77 K. It is expected that a coherently strained MgCdTe/CdTe/MgCdTe DH solar cell design will produce higher efficiency and V<sub>oc</sub> compared to the ZnTe/CdTe/MgCdTe design with relaxed ZnTe layer. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2014
7

Homoepitaxial nonpolar (10-10) ZnO/ZnMgO monolithic microcavities: Towards reduced photonic disorder

Zuniga-Perez, Jesús, Kappei, Lars, Deparis, Christiane, Reveret, François, Grundmann, Marius, de Prado, Esther, Jamadi, O., Leymarie, J., Chenot, S., Leroux, M. 03 August 2018 (has links)
Nonpolar ZnO/ZnMgO-based optical microcavities have been grown on (10-10) m-plane ZnO substrates by plasma-assisted molecular beam epitaxy. Reflectivity measurements indicate an exponential increase of the cavity quality factor with the number of layers in the distributed Bragg reflectors. Most importantly, microreflectivity spectra recorded with a spot size in the order of 2 lm show a negligible photonic disorder (well below 1 meV), leading to local quality factors equivalent to those obtained by macroreflectivity. The anisotropic character of the nonpolar heterostructures manifests itself both in the surface features, elongated parallel to the in-plane c direction, and in the optical spectra, with two cavity modes being observed at different energies for orthogonal polarizations.
8

Absorptive lasing mode suppression in ZnO nano- and microcavities

Wille, Marcel, Michalsky, Tom, Krüger, Evgeny, Grundmann, Marius, Schmidt-Grund, Rüdiger 06 August 2018 (has links)
We conclusively explain the different lasing mode energies in ZnO nano- and microcavities observed by us and reported in literature. The limited penetration depth of usually used excitation lasers results in an inhomogeneous spatial gain region depending on the structure size and geometry. Hence, weakly or even nonexcited areas remain present after excitation, where modes are instantaneously suppressed by excitonic absorption. We compare the effects for ZnO microwires, nanowires, and tetrapod-like structures at room temperature and demonstrate that the corresponding mode selective effect is most pronounced for whispering-gallery modes in microwires with a hexagonal cross section. Furthermore, the absorptive lasing mode suppression will be demonstrated by correlating the spot size of the excitation laser and the lasing mode characteristic of a single ZnO nanowire.
9

Selective growth of tilted ZnO nanoneedles and nanowires by PLD of patterned sapphire substrates

Shkurmanov, Alexander, Sturm, Chris, Lenzner, Jörg, Feuillet, Guy, Tendille, Florian, De Mierry, Philippe, Grundmann, Marius 22 September 2016 (has links) (PDF)
We report the possibility to control the tilting of nanoneedles and nanowires by using structured sapphire substrates. The advantage of the reported strategy is to obtain well oriented growth along a single direction tilted with respect to the surface normal, whereas the growth in other directions is suppressed. In our particular case, the nanostructures are tilted with respect to the surface normal by an angle of 58°. Moreover, we demonstrate that variation of the nanostructures shape from nanoneedles to cylindrical nanowires by using SiO2 layer is observed.
10

Chemical Bath Deposition Of Group Ii-vi Semiconductor Thin Films For Solar Cells Applications

Khallaf, Hani 01 January 2009 (has links)
Chemical bath deposition (CBD) is the analog in liquid phase of the well-known chemical vapor deposition technique in the vapor phase. In CBD, deposition of thin films takes place from aqueous solutions at low temperatures by a chemical reaction between dissolved precursors, with the help of a complexing agent. Among all techniques used to grow Group II-VI semiconductors, CBD has the advantage of being a simple, low temperature, and inexpensive large-area deposition technique. So far, its contribution in thin film solar cells industry has been mainly limited to growing n-type CdS and/or ZnS window layers for CdTe-based and CIGS-based solar cells. In this work we first optimize the CBD process of CdS using nitrilotriacetic acid and hydrazine as complexing agents as an alternative to ammonia. We then study the effect of the cadmium precursor on the optical/electrical properties, as well as crystal structure, morphology, and composition of CBD-CdS films. A better understanding of the CBD process of CdS as a whole has been achieved and high quality CBD-CdS films have been obtained. Next, we investigate in-situ doping of CBD-CdS with group III elements, such as B, Al, In, and Ga. The objective is to show that CBD is capable of not only growing CdS but also of doping it to reduce its resistivity and, as a result, facilitate its use in solar cells as well as other optoelectronic device fabrication. A four orders of magnitude drop of film resistivity has been achieved without a significant change in film bandgap, structure, or morphology. Finally, we test the possibility of using CBD to grow transparent conducting oxide (TCO) films, such as Al-doped ZnO films and cadmium stannate films. First, we study CBD of ZnO and later in-situ doping of ZnO using Al. High quality ZnO thin films have been grown using CBD with the help of four different complexing agents. Post heat treatment in argon ambient helped reduce resistivity of CBD-ZnO undoped films to ~ 10-1 Ω-cm. In-situ doping of such films using Al shows promising results. Such films could be an alternative to indium tin oxide (ITO) layers that are commonly used as TCO layers for solar cells. Another approach is to use CBD to grow CdO and SnO2 thin films, with the goal of obtaining Cd2SnO4 by later annealing of these two layers. Cadmium stannate is another TCO candidate that could replace ITO in the near future. We have succeeded in growing CBD-CdO thin films using three different complexing agents. Undoped CBD-CdO films with a resistivity as low as 1.01 x10-2 Ω-cm and a carrier density as high as 2.59 x 1020 cm-3 have been obtained. SnO2 films have been successfully grown using CBD. Fabrication of Cadmium stannate thin films using CBD is investigated. In summary, our objective to expand the use of CBD beyond just growing CdS and ZnS, and to test the possibility of using it for in-situ doping of group II-VI semiconductors as well as TCO layers fabrication proved to be successful. We believe that this may have a significant impact on solar cells as well as other optoelectronic devices fabrication industry, due to the simplicity and the cost-effectiveness of CBD.

Page generated in 0.1084 seconds