• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 405
  • 100
  • 99
  • 37
  • 27
  • 16
  • 13
  • 10
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 838
  • 310
  • 199
  • 179
  • 171
  • 141
  • 136
  • 106
  • 103
  • 95
  • 68
  • 66
  • 65
  • 62
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Molecular analysis of the congopain gene family.

Kalundi, Erastus Mulinge. January 2008 (has links)
Animal trypanosomosis is a major constraint in livestock production in Sub-Saharan Africa. With the emergence of resistance against trypanocidal drugs, the cost and environmental concerns raised by vector control, and the challenge of antigenic variation in vaccine development, alternative control measures are being sought. An anti-disease strategy, whereby the immune response or chemotherapy is aimed towards pathogenic factors rather than the parasite itself, constitutes such a novel approach. Congopain is the major cysteine protease in Trypanosoma congolense, and upon release in the bloodstream of infected cattle, acts as a pathogenic factor. It is therefore an attractive candidate for an anti-disease vaccine. It was hence deemed necessary to investigate the variability of congopain-like cysteine proteases before attempting to design drugs and vaccines based on the inhibition of congopain. Most congopain-like cysteine protease genes of T. congolense exist in a single locus of 12-14 copies organised as tandem repeats of 2 kb gene units. A gene unit library of 120 clones was constructed out of several cosmid clones selected in a previous study that contained various lengths of the congopain locus. Some 24 gene unit clones were sequenced, and it was found that congopain genes cluster in three sub-families, named CP1 (8 clones), CP2 (12 clones) and CP3 (4 clones). The latter most characteristically shows a substitution of the active site cysteine by a serine. Isoform specific primers were designed and used to verify the proportions of the three isoforms (one third CP1, half CP2 and a sixth CP3) in the remaining clones of the library. Since this first study was conducted in one isolate, IL 3000, the results were subsequently validated in a large array of isolates, of T. congolense, as well as T. vivax and T. brucei subspecies, by a PCR approach. Finally, to gain access to copies of congopain genes that are not present in the locus, but rather scattered in the genome, an attempt was made to construct a 2 kb size-restricted genomic library. Only 206 clones could be produced, of which a mere 8 coded for congopain-like proteases. The fact that 7 out of 8 of these clones belong to CP3 (thought to be inactive) suggested a cloning artefact, possibly related to the activity of the cloned proteases. Overall, all congopain genes appear very conserved in a given species, with 87-99% identity at protein level. The pre- and pro-region were the most conserved, while the catalytic domain was the most variable, especially around the active site cysteine, with frequent replacement by a serine residue, and in one instance by phenylalanine. The histidine residue of the catalytic triad was also substituted by either a serine or a tyrosine in some instances. The proenzyme cleavage site sequence was also variable, with APEA being the predominant N-terminal sequence. RT-PCR analyses indicated that CP1, CP2 and CP3 mRNA are all present in the bloodstream forms of T. congolense, showing that these variants are likely to be expressed. The conclusion of this study is that, given the high overall conservation of congopain genes in the genome, for the purpose of anti-disease vaccine, it is likely that a single immunogen will suffice to raise antibody able to inhibit all circulating congopain-like cysteine proteases. For chemotherapy however, a more in-depth enzymatic characterisation of the mutants, involving functional recombinant expression, will have to be undertaken. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
322

Recombinant expression and evaluation of a- and b- tubulin from Trypanosoma congolense as vaccine candidates for African trypanosomiasis.

Bartlett, Cara-Lesley. January 2010 (has links)
African trypanosomiasis is caused by protozoan parasites known as trypanosomes, which are transmitted by the tsetse fly, affecting both humans and animals. Trypanosoma congolense is one of the main trypanosome species affecting cattle and causes the disease known as nagana. Control of animal African trypanosomiasis currently relies on chemotherapy and vector control methods, neither of which has proven satisfactory. An effective vaccine against trypanosomiasis would be the most cost effective solution to control the disease; however, due to the phenomenon of antigenic variation, intrinsic to the parasite’s outer coat of variable surface glycoprotein, this has not yet been achieved. Recent vaccine efforts have been centred on identification of invariant parasite antigens for use as vaccine candidates. Trypanosome cytoskeleton components have in recent years been shown to be capable of providing a protective immune response against trypanosome infection. These include tubulin proteins, which form the main components of the cytoskeleton, as well as microtubule associated proteins (MAPs) and paraflagellar rod proteins. In the present study α- and β-tubulin from T. congolense were recombinantly expressed and their immuno-protective potential in mice assessed. Amplification of both α- and β-tubulin ORFs from T. congolense genomic DNA was followed by cloning of the amplicons into the T-vector pTZ57R/T, and thereafter sub-cloning into the bacterial expression vector, pET238a and the yeast expression vector pPICZαA28. Only the α-tubulin amplicon was successfully sub-cloned into pICZAαA28; however, no protein expression was achieved upon transfection of the methylotrophic yeast, Pichia pastoris, with this construct. Subcloning of both α- and β-tubulin inserts into pET28a was successful. Expression of recombinant α- and β-tubulin as fusion proteins with a histidine tag, both at a size of 55 kDa, was achieved in Escherichia coli host BL21 (DE3). Recombinant proteins were successfully purified using nickel chelate chromatography under denaturing conditions. Refolding was first attempted by dilution of purified denatured proteins in a refolding buffer followed by reconcentration, but was largely unsuccessful. A second, more successful refolding method was performed wherein denatured proteins were refolded by application of a decreasing gradient of urea, while bound to a nickel chelate column. Native tubulin from cultured T.congolense procyclics was successfully purified and renatured using a polymerisation/depolymerisation method for use as a control for immunisation. Mice were immunised separately with refolded recombinant α- and β-tubulin, native tubulin or an irrelevant protein VP4AA expressed in the same way as the tubulins. ELISA analysis confirmed the production of antibodies against each protein. Parasitaemia developed in all mice following challenge with T. congolense. Only the group immunised with β-tubulin recorded no deaths during the monitoring period despite the presence of parasitaemia, with 60% of mice immunised with α-tubulin or VP4AA and the no antigen control and no mice from the native tubulin immunised group surviving. The results showed that partial protection against trypanosomiasis caused by T. congolense infection was achieved in the group immunised with β-tubulin and suggest that β-tubulin may have vaccine potential. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
323

Structural studies aimed at improving the antigenicity of congopain.

Ndlovu, Hlumani Humphrey. January 2009 (has links)
African animal trypanosomosis or nagana is a tsetse fly-transmitted disease, caused by Trypanosoma congolense, T. vivax and to a lesser extent T. brucei brucei. The disease causes major losses in revenue in many livestock-producing African countries. The available control methods, including chemotherapeutic drugs and insecticidal spraying, have become environmentally unacceptable. Antigenic variation displayed by the parasites has hindered vaccine development efforts. In this context, rather than focusing solely on the parasite itself, efforts in vaccine development have shifted towards targeting pathogenic factors released by the parasites during infection. Congopain, the major cysteine protease of T. congolense, has been shown to act as a pathogenic factor in the disease process. Analysis of the immune response of trypano-tolerant cattle revealed that these animals have the ability to control congopain activity in vivo. Therefore, congopain is an attractive vaccine candidate. To test the protective potential of congopain, immunisation studies had been conducted in cattle using the baculovirus-expressed catalytic domain of congopain (C2) in RWL, a saponin-based proprietary adjuvant from SmithKline-Beecham. Immunised animals were partially protected against a disease caused by an infection with T.congolense. Unfortunately, subsequent attempts to reproduce these results were disappointing. It was hypothesised that this failure could be due to the different expression system (P. pastoris) used to produce the antigen (C2), or the different adjuvant, ISA206 (Seppic), used, thus hinting towards an epitope presentation problem. Congopain had been shown to dimerise at physiological pH in vitro. Sera from trypano-tolerant cattle preferentially recognised the dimer conformation, advocating for protective epitopes to be dimer associated. For that reason, the present study aimed at improving the antigenicity of congopain through firstly, the elucidation of the protective epitopes associated with the dimer, secondly, the determination of the 3-D structure of the protease in order to map protective epitopes to later design mimotopes, and thirdly improve the delivery of congopain to the immune cells while maintaining the conformation of the protease by using a molecular adjuvant, BiP. A dimerisation model was proposed, identifying the amino acid residues forming the dimerisation motif of congopain. In the present study, particular amino acid residues located in the dimerisation motif were mutated by PCR-based site-directed mutagenesis to generate mutants with different dimerisation capabilities. The congopain mutants were expressed in yeast and their dimerisation capability was assessed by PhastGel® SDS-PAGE. The mutations altered both the electrophoretic mobility of the mutants and their enzymatic characteristics compared to wild-type congopain. This advocated for the involvement of these amino acid residues in the dimerisation process, although they seem not to be the only partakers. Wild-type C2 and mutant forms of C2 were heterologously expressed in P. pastoris and purified to crystallisation purity levels. Crystallisation of these proteins is currently underway, but the results are still unknown. While awaiting the crystallisation results, in silico homology modelling was employed to gain insight into the 3-D structure, using cruzipain crystal structure as a template. The modelled 3-D structure of congopain followed the common framework of cathepsin L-like cysteine proteases. Due to time constraints and awaiting the crystal-derived 3-D structure, the 3-D model of congopain was not exploited to design mimotopes with the potential to provide protection against the disease. As it was shown that protective epitopes are likely to be dimer-specific, maintaining the native conformation of congopain is essential for stimulating a protective immune response in animals. Chemically formulated adjuvants usually contain high salt concentration, at acidic or basic pH, thus might change the conformation of the protease. Adjuvants capable of efficiently delivering the antigen to immune cells while maintaining the conformation of the protease were sought. Proteins belonging to the HSP70 family are natural adjuvants in higher eukaryotes. A protein belonging to the HSP70 family was previously identified in T. congolense lysates and is homologous to mammalian BiP. Congopain was genetically fused with T. congolense BiP in order to improve antigen delivery and production of congopain activity-inhibiting antibodies. The chimeric proteins were successfully expressed in both bacteria and yeasts. The low yields of recombinantly expressed chimeras in yeast and problems associated with renaturation and purification of bacteria-expressed chimeras prevented immunisation studies in mice. However, the groundwork was laid for producing BiP-congopain chimeras for use in an anti-disease vaccine for African trypanosomosis. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
324

Dissecting the Role of 4-1BB and its Ligand in Enhancing CD8 Effector and Memory T Cell Responses

Lin, Gloria Hoi Ying 19 January 2012 (has links)
The Tumor necrosis factor receptor (TNFR) family member 4-1BB and its TNF family ligand, 4-1BBL, are important in modulating multiple stages of the CD8 T cell response. Here I show that during a mild influenza infection, 4-1BBL is completely dispensable for initial T cell responses, viral clearance and mouse survival. In contrast, during severe influenza infection with prolonged viral load, 4-1BB expression is sustained on lung T cells and 4-1BBL is upregulated in the lung compared to mild influenza infection. Under these conditions, 4-1BBL-deficiency results in a decreased CD8 T cell response in the lungs, higher viral load, impaired lung function and increased mortality. These findings suggest that the sustained expression of 4-1BB and its ligand as a function of viral load fine-tunes the CD8 T cell response to a level appropriate for the severity of infection. 4-1BBL is also important for maintaining CD8 memory T cell survival following the clearance of an infection. I found that 4-1BB is selectively expressed on a subset of memory CD8 T cells in the bone marrow. I further showed that the TNFR family member GITR is intrinsically required on CD8 memory T cells for 4-1BB expression in vivo, and that 4-1BB on CD8 T cells interacting with 4-1BBL on a radio-resistant cell in the bone marrow contributes to CD8 memory T cell survival. Immunotherapy with 4-1BB agonists has shown efficacy in eradication of tumors in several mouse models. These effects have been attributed to 4-1BB on multiple cell types. I found that 4-1BB either on transferred T cells or on host T cells was necessary and sufficient for inducing regression of established tumors when anti-4-1BB is combined with adoptive T cell therapy. This thesis highlights the importance of the CD8 T cell intrinsic role of 4-1BB in the immune system.
325

Dissecting the Role of 4-1BB and its Ligand in Enhancing CD8 Effector and Memory T Cell Responses

Lin, Gloria Hoi Ying 19 January 2012 (has links)
The Tumor necrosis factor receptor (TNFR) family member 4-1BB and its TNF family ligand, 4-1BBL, are important in modulating multiple stages of the CD8 T cell response. Here I show that during a mild influenza infection, 4-1BBL is completely dispensable for initial T cell responses, viral clearance and mouse survival. In contrast, during severe influenza infection with prolonged viral load, 4-1BB expression is sustained on lung T cells and 4-1BBL is upregulated in the lung compared to mild influenza infection. Under these conditions, 4-1BBL-deficiency results in a decreased CD8 T cell response in the lungs, higher viral load, impaired lung function and increased mortality. These findings suggest that the sustained expression of 4-1BB and its ligand as a function of viral load fine-tunes the CD8 T cell response to a level appropriate for the severity of infection. 4-1BBL is also important for maintaining CD8 memory T cell survival following the clearance of an infection. I found that 4-1BB is selectively expressed on a subset of memory CD8 T cells in the bone marrow. I further showed that the TNFR family member GITR is intrinsically required on CD8 memory T cells for 4-1BB expression in vivo, and that 4-1BB on CD8 T cells interacting with 4-1BBL on a radio-resistant cell in the bone marrow contributes to CD8 memory T cell survival. Immunotherapy with 4-1BB agonists has shown efficacy in eradication of tumors in several mouse models. These effects have been attributed to 4-1BB on multiple cell types. I found that 4-1BB either on transferred T cells or on host T cells was necessary and sufficient for inducing regression of established tumors when anti-4-1BB is combined with adoptive T cell therapy. This thesis highlights the importance of the CD8 T cell intrinsic role of 4-1BB in the immune system.
326

Development of Delivery Strategies Facilitating Broad Application of Messenger RNA Tumor Vaccine

Phua, Kyle K.L. January 2014 (has links)
<p>Genetic modification of dendritic cells with plasmid DNA is plagued with low transfection efficiencies because DNA taken up by non-dividing dendritic cells rarely reaches the nucleus. But this difficulty can be overcome by the use of messenger RNA (mRNA), which exerts its biological function in the cytoplasm and obviates the need to enter the nucleus. Since pioneering work of Boczkwoski et al, the ex-vivo application of mRNA-transfected dendritic cells as a vaccine has been evaluated in numerous phase I trials worldwide and is still currently being actively optimized in clinical trials. </p><p> However, a major disadvantage of using mRNA-transfected DCs as a vaccine is that it requires patients to undergo at least one 4-hour leukapheresis procedure, followed by separation of the peripheral blood mononuclear cells (PBMCs), from which monocytes are isolated and cultured for a week in a defined medium with cytokines. The resulting DCs are matured after being loaded with mRNA and frozen for storage. Aliquots are subsequently thawed prior to administration to patients. This process of harvesting, culturing and loading DCs is more time- and resource-intensive than Provenge, the first FDA approved cell based tumor vaccine in 2011.Recent evidence has confirmed a lack of broad translation of Provenge due to complexity and cost of treatment. This predicates a similar fate for mRNA-transfected dendritic cell vaccine going forward. </p><p> This thesis presents alternative delivery strategies for mRNA mediated tumor vaccination. Through the application of synthetic and natural biomaterials, this thesis demonstrates two viable approaches that reduce or eliminate the need for extensive manipulation and cell culture.</p><p> The first approach is the direct in vivo delivery of mRNA encapsulated in nanoparticles for tumor vaccination. A selected number of synthetic gene carriers that have been shown to be effective for other applications are formulated with mRNA into nanoparticles and evaluated for their ability to transfect primary DCs. The best performing formulation is observed to transfect primary murine and human dendritic cells with an efficiency of 60% and 50% (based on %GFP+ cells) respectively. The in vivo transfection efficiency and expression kinetics of this formulation is subsequently evaluated and compared with naked mRNA via various routes of delivery. Following this, a proof-of-concept study is presented for a non-invasive method of mRNA tumor vaccination using intranasally administered mRNA encapsulated in nanoparticles. Results show that intranasally administered mRNA induces tumor immunity only if it is encapsulated in nanoparticles. And anti-tumor immunity is observed in mice intranasally immunized under both prophylactic as well as therapeutic models. </p><p> The second approach evaluates whole blood cells as alternative cell based mRNA carriers. A method is developed to encapsulate intact and functional mRNA in murine whole blood cells. Whole blood cells loaded with mRNA not only include erythrocytes but also T cells (CD3+), monocytes (CD11b), antigen presenting cells (MHC class II) as well as plasmacytoid DCs (CD45R-B220). Mice immunized with mRNA-loaded whole blood cells (intravenously) develop both humoral and cellular antigen-specific immune responses, and demonstrate delayed tumor onset and progression in a melanoma therapeutic immunization model (using tyrosinase related protein -2, TRP-2, as an antigen). Importantly, the therapeutic efficacy of mRNA-loaded whole blood cell vaccine formulation is found to be comparable to mRNA-transfected dendritic cell vaccine.</p><p> In conclusion, this thesis presents new methods to the delivery of mRNA tumor vaccines that reduce or eliminates the need for extensive cell manipulation and culture. Results presented in this thesis reveal viable research directions towards the development and optimization of mRNA delivery technologies that will address the problem of broad translation of mRNA tumor vaccines in the clinics.</p> / Dissertation
327

Treatment of prion diseases with camelid antibodies

Jones, Daryl Rhys January 2013 (has links)
No description available.
328

Subcutaneous Immunotherapy with a Depigmented Polymerized Birch Pollen Extract – A New Therapeutic Option for Patients with Atopic Dermatitis

Novak, Natalija, Thaci, Diamant, Hoffmann, Matthias, Fölster-Holst, Regina, Biedermann, Thilo, Homey, Bernhard, Schäkel, Knut, Stefan, Josef A., Werfel, Thomas, Bieber, Thomas, Sager, Angelika, Zuberbier, Torsten 28 February 2014 (has links) (PDF)
Background: Birch pollen is an important outdoor allergen able to aggravate symptoms in atopic dermatitis (AD). Specific immunotherapy (SIT), an established procedure for allergic airway diseases, might also represent an attractive therapeutic option for the causal treatment of allergen-triggered cutaneous symptoms in these patients. Studies with house dust mite SIT have already shown beneficial effects in AD patients, whereas the safety and efficacy of SIT with birch pollen extract in AD patients have not been studied so far. The aim of this study was to evaluate for the first time the safety and efficacy of SIT with a depigmented polymerized birch pollen extract in AD patients. Methods: Fifty-five adult patients with moderate-to-severe AD and clinically relevant sensitization to birch pollen received SIT for 12 weeks. SIT was continued during birch pollen season. The assessment of safety, the total SCORAD value, and the Dermatology Life Quality Index (DLQI) were evaluated. Results: The median total SCORAD value was reduced by 34% (p < 0.001) during the course of treatment and the mean DLQI improved by 49% (p < 0.001) despite strong simultaneous birch pollen exposure. Eight patients (14.5%) developed systemic reactions and 19 patients (34.5%) developed local reactions which were of mild intensity in most cases. No patient discontinued the study prematurely due to adverse drug reactions. Coseasonal treatment was well tolerated. Conclusion: SIT with a depigmented polymerized birch pollen extract leads to significant improvement of the SCORAD value and the DLQI in patients suffering from moderate-to-severe AD sensitized to birch pollen. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
329

IgG-mediated Immune Suppression: the Effect on the Host Immune System

Brinc, Davor 30 July 2008 (has links)
One of the most effective immunological interventions for human disease prevention is the administration of anti-red blood cell (RBC) IgG, more specifically, anti-D IgG, for prevention of hemolytic disease of the fetus and newborn (HDN), a serious and potentially fatal condition caused by the maternal immune response against the Rhesus (Rh) blood group system D antigen on fetal RBC. Despite its widespread clinical use, the mechanism of the suppressive anti-RBC IgG effect is not fully understood. In a murine model of immunity to foreign RBCs, transfusion of mice with IgG-opsonized RBCs strongly attenuated the antibody response compared to transfusion of untreated RBCs. This model was used to study the anti-RBC IgG effect on the host immune response. Contrary to the predominant theories of the anti-D effect, here it is shown that IgG-mediated RBC clearance is not sufficient for the attenuation of antibody responses. IgG-opsonized RBCs internalized by the mononuclear phagocytic cells could stimulate T and B cell responses against RBC antigens. This thesis also shows that the adaptive tolerance at the T or B cell level is not the reason for the attenuation of the antibody response. Instead, IgG selectively prevented the appearance of antigen-primed RBC-specific B cells and, surprisingly, induced the host B cell response against the IgG in complex with RBCs. These results suggest that the inability of RBC-specific B cells to recognize and present RBC-specific epitopes may explain the inhibitory IgG effect.
330

Dendritic cell mRNA delivery strategies for ovarian cancer immunotherapy

Maxwell, Tammy Joy January 2007 (has links)
Ovarian cancer, with the highest mortality rate amongst gynaecological malignancies in Australia, is the eighth most common cancer and the fifth cause of cancer-related deaths in women. Currently, five-year survival for women diagnosed with ovarian cancer is only 40 % and despite many patients experiencing remission, approximately 80 % of them will relapse due to residual micrometastasis. The limited impact of standard therapies on the prognosis for recurrent chemotherapy-resistant disease and the need to identify less toxic alternatives has motivated the development of strategies to combat the aggressive and life-threatening burden of ovarian cancer. A novel therapy against cancer utilises dendritic cells (DC), potent antigen presenting cells, to deliver tumour antigens to the immune system for the stimulation of cytotoxic T-lymphocyte (CTL) responses. DC immunotherapy has been used for the treatment of patients with ovarian cancer; however, clinical responses after the injection of antigen-loaded DC have been disappointing. Therefore, the identification of additional tumour associated antigens (TAA) is required. A TAA highly expressed in ovarian cancer cells, CA125, is a candidate target for DC-based immunotherapy. Initially, CTL responses to CA125 were studied in the context of HLA-A*0201. CD8+ T-cell responses specific for CA125 peptides (with high affinity for the MHC class I) were generated from cultures initiated with peptide-loaded monocyte-derived DC (Mo-DC). To expand the evaluation of T-cell recognition of CA125 to non-HLA-A*0201 individuals, messenger RNA (mRNA) was investigated as an antigen-loading vehicle. RNA encodes for the repertoire of epitopes presented by the TAA, potentially inducing immune responses in the context of multiple MHC class I and II molecules to known/unknown antigens. One focus of this study was to investigate a novel mRNA transfection system utilising mannan for the delivery of mRNA into DC. Initially the immunomodulating effect of mannan was examined in terms of DC activation. Mannan induced the phenotypic and functional maturation of immature Mo-DC in vitro. Next, the ability of oxidised mannan (OxM) linked to mRNA was investigated for its capacity to deliver enhanced green fluorescent protein (EGFP) mRNA into DC. We observed high transfection efficiencies in the murine and in human DC systems using low mRNA concentrations, in the absence of significant cell viability impairment. Interestingly, upon mRNA delivery via the OxM-PEI complex, DC maturation was induced to considerably higher levels as compared with that achieved with electroporation and non-transfected controls, this was measured by phenotype (CD83) and IL-12 secretion. Within this study, OxM-PEI did not deliver TAA encoding mRNA into DC for the stimulation of CTL. In summary, mannan is a novel strategy to deliver mRNA and a strong maturation signal simultaneously to human Mo-DC. The functional capacity of this system requires further investigation before it can be considered for clinical use. Electroporation has evolved as a superior method for mRNA delivery into DC as reported in the literature. Therefore, a comprehensive study was performed encompassing the critical issues associated with transfection efficiency, in order to standardise an electroporation protocol for use in DC immunotherapy schedules. EGFP was used as a model antigen to optimise mRNA uptake by Mo-DC by monitoring the expression of the reporter gene by FACS analysis. Influenza matrix protein 1 mRNA was, then, utilised as a model antigen for MHC class I restricted antigen presentation, for confirmation of the optimised loading parameters. The efficiency of this delivery system was assessed using CA125 mRNA in stimulating antigen-specific T-cell responses in PBMC of healthy individuals. CD4+ and CD8+ antigen-specific T-cell responses were generated recognising CA125 mRNA loaded Mo-DC and also ovarian cancer cell lines endogenously expressing CA125. This study has identified CA125 specific T-cell responses in healthy donors, allowing further investigation into the potential for its use as a candidate TAA in ovarian cancer immunotherapy. Furthermore, the use of Mo-DC transfected with mRNA encoding TAA is a promising strategy for the delivery of TAA in the generation of antigen-specific T-cell responses. In summary, the results gained from this PhD thesis should be taken into consideration when designing future DC immunotherapy strategies to combat one of the leading causes of cancer mortality in women, ovarian cancer.

Page generated in 0.0512 seconds