111 |
De l'impureté Kondo aux états liés dans les supraconducteurs / From the Kondo impurity to bounds states in superconductorsGuissart, Sébastien 14 December 2016 (has links)
Dans cette thèse, je me suis principalement intéressé aux effets liés aux impuretés magnétiques dans les métaux et supraconducteurs. Dans le premier chapitre je présenterai l’effet Kondo, celui-ci se produit lorsqu’une impureté magnétique présente un couplage antiferromagnétique avec le métal qu’elle pollue. Les électrons forment alors, à suffisamment basse température, un nuage écrantant le magnétisme de l’impureté. Le deuxième chapitre portera sur les états de Yu-Shiba-Rusinov produits par des impuretés magnétiques dans un supraconducteur. Dans ce cas, l’impureté brise localement l’ordre supraconducteur et un état quantique est crée à l’intérieur du gap.Certains matériaux dits topologiques peuvent comporter des états quantiques protégés à leurs bords contre les perturbations extérieures. Dans les deux derniers chapitres, je présenterai les propriétés des supraconducteurs topologiques et leurs états de bords. Dans le troisième chapitre je présenterai les différentes phases topologiques que peut comporter un supraconducteur avec un paramètre d’ordre complexe mélangeant ondes p et s en présence d’un champ Zeeman. Dans le quatrième et dernier chapitre je présenterai une étude des états de bords que peut comporter ce type de supraconducteurs. / In this thesis, I was mainly interested in the effects related to magnetic impurities in metals and superconductors.In the first chapter I will present the Kondo effect, this effect occurs when a magnetic impurity exhibits an antiferromagnetic coupling with the metal that it pollutes. The electrons then form, at a sufficiently low temperature, a cloud screening the magnetism of the impurity. The second chapter will focus on the states of Yu-Shiba-Rusinov products by magnetic impurities in a superconductor. In this case, the impurity locally breaks the superconducting order and a quantum state is created inside the gap.Some so-called topological materials may include quantum states protected at their edges against external perturbations. In the last two chapters, I will present the properties of topological superconductors and their edge states. In the third chapter I will present the different topological phases that can include a superconductor with a parameter of complex order mixing waves p and s in the presence of a Zeeman field.In the fourth and last chapter I will present a study of the states of edge that may include this type of superconductors.
|
112 |
Étude de l’influence des impuretés métalliques sur la réactivité des composites C/C lors de freinages à haute performance / Study of the metal impurities influence on the C/C composites reactivity in high performance brakingBourlet, Frédérique 22 December 2015 (has links)
Lors d’un freinage aéronautique, les disques en composite C/C constituant les freins sont susceptibles d'être pollués par différentes substances émanant d'éléments de structure de l’avion ou de produits déverglaçants. Ces impuretés, introduites en faible proportion, ont un impact sur les propriétés tribologiques et thermiques des carbones et peuvent être à l’origine d’une usure précoce du frein. Dans cette étude, le nickel, le calcium et le zirconium ont été retenus pour simuler ces contaminants. L’objectif de la thèse fut de déterminer l’influence de la réactivité et de la chimie de surface du substrat sur l’activité de ces additifs. Un graphite Slx50 (Timcal®) a été broyé sous atmosphère contrôlée afin de contrôler sa réactivité. Après l’étape d’imprégnation par différentes solutions salines, les clichés de microscopie électronique en transmission (MET) montrent que la répartition de ces éléments est tributaire de la réactivité du support carboné. La désorption programmée en température couplée à un spectromètre de masse (TPD-MS) a mis en évidence des réactions entre le carbone et ces éléments. La spectrométrie de photoélectrons X (XPS) a permis de compléter l’étude et de proposer un mécanisme réactionnel pour chacun des additifs. / At the moment of aircraft braking, discs in composite C/C constituting the brakes may be polluted by various substances from structural elements of the aircraft or by icing agent products. These impurities introduced in small proportion, have an impact on the tribological and thermal properties of carbon and can be the cause of premature aging of the brake. In this study, nickel, zirconium and calcium were selected to simulate these contaminants. The aim of the thesis was to determine the influence of the reactivity and the surface chemistry of the substrate on the activity of these additives. A graphite Slx50 (Timcal®) was milled under controlled atmosphere in order to control its reactivity. After the impregnation step by various salt solutions, Transmission electron microscopy (TEM) shows that the distribution of these elements is dependent on the reactivity of the carbon support. Temperature Programmed Desorption coupled to Mass Spectrometer (TPD-MS) showed reactions between carbon and these elements. The X-ray Photoelectron Spectroscopy (XPS) allowed to complete the study and to propose a reaction mechanism for each additive.
|
113 |
Metallic impurities in the Cu-fraction of Ni targets prepared from NiCl2 solutionsManrique-Arias, J. C., Avila-Rodriguez, M. A. January 2015 (has links)
Introduction
Copper-64 is an emerging radionuclide with applications in PET molecular imaging and/or internal therapy and it is typically produced by proton irradiation of isotopically enriched 64Ni electrodeposited on a suitable backing substrate. We recently reported a simple and efficient method for the preparation of nickel targets from electrolytic solutions of nickel chloride and boric acid [1]. Herein we report our recent research work on the analysis of metallic impurities in the copper-fraction of the radiochemical separation process.
Material and Methods
Nickel targets were prepared and processed as previously reported [1]. Briefly, the bath solution was composed of a mixture of natural NiCl2. 6H2O (135 mg/ml) and H3BO3 (15 mg/ml) and Ni was electrodeposited using a gold disk as cathode and a platinum wire as anode. The plating process was carried out at room temperature using 2 ml of bath solution (pH = 3.7) and a constant current density of 60 mA/cm2 for 1 hour. The unirradiated Ni targets were dissolved in 1–2 ml of concentrated (10M) HCl at 90 oC. After complete dissolution of the Ni layer, water was added to dilute the acid to 6M, and the solution was transferred onto a chromatographic column containing AG 1-X8 resin equilibrated with 6M HCl. The Ni , Co and Cu isotopes were separated by using the well-known chromatography of the chloro-complexes. The sample-fractions containing the Cu isotopes (15 ml, 0.1M HCl) were collected in plastic centrifuge tubes previously soaked in 1M HNO3 and rinsed with Milli-Q water (18 MΩ cm). Impurities of B, Co, Ni, Cu and Zn in these samples were determined by inductively coupled plasma-mass spectroscopy (ICP-MS) at the Department of Geosciences (Laboratory of Isotopic Studies) of the National University.
Results and Conclusions
The mass of Ni deposited in 1 h was 25.0 ± 1.0 mg (n = 3) and the current efficiency was > 75 % in all cases. The pH of the electrolytic solution tended to decrease along the electrodeposition process (3.71.6). The results of ICP-MS analysis of the Cu-fractions from the cold chromatography separation runs are shown in FIG. 1. We were particularly interested in the boron impurities as H3BO3 is used as buffer for electrodeposition of the Ni targets.
Except for the Ni impurities that were deter-mined to be in the range of ppm (mg/l), all other analyzed metallic impurities were found to be in the range of ppb (µg/l), including boron. The Co, Ni, Cu and Zn impurities determined in the Cu-fraction in this work using Ni targets electrode-posited from a NiCl2 acidic solution, are in the same order of magnitude compared with that obtained when using targets prepared from an alkaline solution [2], with the advantage of the simplicity of the electrodeposition method from NiCl2 solutions, as the target material is already recovered in the chemical form of NiCl2, enabling a simpler, one step process to prepare a new plating solution when using enriched 64Ni target material for the production of 64Cu.
|
114 |
Vliv atomů kovů na dohasínající dusíkové plazma / Influence of metallic atoms on nitrogen post-dischargeBocková, Ivana January 2010 (has links)
The aim of this master thesis is to study the influence of metallic atoms on nitrogen post-discharge. Pure nitrogen post-discharge is a subject study of many works dealing with kinetic processes in plasma. Unfortunately, there are only a few published works that present influence of various traces on nitrogen post-discharge kinetics. This master thesis deals with problems of nitrogen post-discharge containing mercury traces. All experimental data were obtained using optical emission spectroscopy of a DC discharge in a flowing mode, which can achieve appropriate temporal resolution in the order of milliseconds. Spectra emitted during the post-discharge were recorded in the range of 320-780 nm and the following molecular spectral systems were identified: • 1. positive system of nitrogen: N2(B) -> N2(A), • 2. positive system of nitrogen: N2(C) -> N2(B), • 1. negative system of nitrogen: N2+(C) -> N2+(X), • NO-beta system: NO(B) -> NO(X). Besides them we were able to record the mercury line at 254 nm, only (in the spectrum of the first as well as in the second order); no other mercury lines were observed. The mercury vapor was introduced into the system at selected post-discharge time. Dependence of selected molecular band head intensities as well as mercury line intensity on experimental conditions (pressure, discharge power, wall temperature, time of mercury vapor introduction) were observed in time evaluation. The data obtained in pure nitrogen were used as a reference. The obtained results showed very high sensitivity of kinetic processes on mercury atoms presence. If mercury was introduced into the post-discharge the mercury line was observable around the site where mercury vapor was introduced into the discharge. The experimental data showed that mercury line intensity was directly proportional to the mercury atoms concentration and saturation effect could be observed. The energy level diagram demonstrates that the observed mercury line can be excited by collisions with nitrogen ground state molecule excited to vibrational level 18. Thus the mercury can be used for the monitoring of population at this vibrational level. Finally we obtained the population profile at this nitrogen metastable level during the post-discharge. The presented work demonstrates possibility of mercury atoms application for the monitoring of one nitrogen metastable state. Unfortunately, the contemporary data are not sufficient for the measurement of metastable absolute concentration. However, complex understanding of nitrogen post-discharge kinetics is still an open problem. Therefore a lot of future work should be done although the presented work brings a good fundament for such research.
|
115 |
The Analysis of Volatile Impurities in Air by Gas Chromatography/Mass SpectrometryTalasek, Robert Thomas 05 1900 (has links)
The determination of carbon monoxide is also possible by trapping CO on preconditioned molecular sieve and thermal desorption. Analysis in this case is performed by gas chromatography/mass spectroscopy, although the trapping technique is applicable to other suitable GC techniques.
|
116 |
A Polarizable Molecular Dynamics Potential for Molten Salt Property PredictionThurgood, Jared 14 August 2023 (has links) (PDF)
The present study attempts to find an alternate computational tool to model the complex physical interactions within the molten salt FLiNaK in a way that is both efficient and accurate. Additionally, this study seeks to describe the effects of several different types of impurities on the FLiNaK salt system. This study selects two different polarizable force fields, the AMOEBA polarizable approach and the polarizable ion model, to determine the density and the structure of the impure FLiNaK salt mixtures at typical operating temperatures in molten salt reactors (between 500-900 °C). This study conducts ab initio molecular dynamics (AIMD) simulations and classical molecular dynamics (CMD) for these salt mixtures to determine the correct parameter set for these two force fields. This study also uses an optimizer to minimize the difference between the forces calculated with AIMD and CMD simulation data. The AMOEBA polarizable approach is able to predict density for FLiNaK; however, it is unable to reliably predict other thermophysical properties due to the instability of its CMD simulations. The polarizable ion model is able to reliably determine density and salt structure for pure and impure FLiNaK mixtures. This model can be further used to determine other thermophysical properties. The polarizable ion model predicted densities for four impure salt mixtures: FLiNaK-MoF3, FLiNaK-UF3, FLiNaK-CsF, and FLiNaK-ZrF4. The predicted densities at 700 °C given in kg/m3 are 1929.94, 2454.15, 1650.67, and 1961.87, respectively with an error compared to the additive density model of -2.51%, -5.79%, -17.15%, and -1.67%, respectively. This study presents the radial distribution function and density correlation functions for each salt mixture. This study also presents a discussion of the shortcomings of the AMOEBA polarizable approach, as well as further work that may be done with these tools.
|
117 |
Impurities and the Evaporation Morphology of Zinc Single CrystalsCarson, William Alfred John January 1970 (has links)
<p> In this thesis the results of optical and scanning electron
microscopic investigations of the evaporation morphology of zinc single crystals are presented. Dislocation etch pits developed on (0001) zinc cleavage surfaces. A mechanism is proposed to account for enhanced evaporation at decorated dislocations. The observation of macroledges on pit faces is reported and attributed to impurity-induced bunching of monatomic ledges, the impurities having out-diffused from the bulk. A proposed model for evaporation of faceted surfaces is used to interpret the ledge morphology which developed when samples were evaporated in an oxygen environment. Finally, a correlation between the effects of bulk impurities and gaseous impurities on ledge morphology is demonstrated.</p> / Thesis / Doctor of Philosophy (PhD)
|
118 |
Low Carbon n-GaN Drift Layers for Vertical Power Electronic DevicesCarlson, Eric Paul 14 July 2023 (has links)
GaN holds significant potential as a material for vertical p-n diodes, enabling the realization of devices with reverse breakdown voltages of 5 kV or higher. Carbon serves as the primary compensating dopant in the growth process, incorporated into GaN during metalorganic chemical vapor deposition (MOCVD) growth. The level of carbon incorporation depends on several factors, including growth rate, ammonia flow, temperature, pressure, and trimethylgallium (TMGa) flow. Through guided empirical modeling, it was demonstrated that the carbon incorporation in GaN growth could be predicted using a single parameter based on the ratio of ammonia flow to the growth rate. This model accurately predicts carbon concentrations ranging from 1x1017 to 5x1014 cm-3 while allowing for maximized growth rates. Other extrinsic dopants have either been reduced below the threshold of consideration or modeled using similar single-parameter relationships. By identifying the dominant extrinsic dopants and accounting for them, an intrinsic defect with a concentration of 2.2x1015 cm-3 was identified. By combining these relationships, growth conditions for n-GaN were optimized, resulting in electron concentrations as low as 1x1015 cm-3. Leveraging these techniques, p-n diodes were grown, achieving a reverse breakdown voltage as high as 3.1 kV. / Doctor of Philosophy / Power electronic devices based on vertical GaN have the potential to revolutionize applications such as electric vehicles, solar charging systems, and the smart grid. However, there are significant materials challenges that need to be addressed in order to realize these devices. They must be extremely pure and extremely thick. Unfortunately, the primary source of these materials also contains carbon, which can negatively impact purity. To overcome this challenge, an empirical model for the growth process has been developed. This model enables independent control over the carbon source and the removal of carbon, using a single parameter. By leveraging this model, it becomes possible to optimize the trade-off between high purity, high growth rates, and ideal electronic properties. Using these techniques, devices were grown with next-generation levels of performance at minimal time and cost.
|
119 |
THE EFECT OF IMPURITIES IN WATER FROM LAKE ERIE ON THE ADHESIVE STRENGTH OF ICE TO WIND TURBINE MATERIALSLEE, Tung-Ying 19 September 2011 (has links)
No description available.
|
120 |
Photoluminescence and kinetic of MOCVD grown P-type GaAs:Nd and Nd-implanted semi-insulating GaAsSaha, Uttam Kumar January 1996 (has links)
No description available.
|
Page generated in 0.0173 seconds