• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 166
  • 51
  • 23
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 326
  • 326
  • 326
  • 63
  • 56
  • 56
  • 54
  • 50
  • 42
  • 39
  • 37
  • 35
  • 35
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Development of Combustion Indicators for Control of Multi-Fuel Engines Based on New Combustion Concepts

Jiménez, Irina Ayelén 28 February 2022 (has links)
[ES] Debido a las regulaciones en materia de emisiones y CO2 la industria automotriz a desarrollado diferentes tecnologías innovadoras. Estas tecnologías incluyen combustibles alternativos y nuevos modos de combustión, entre otros. De aquí surge la necesidad del desarrollo de nuevos métodos para el control de la combustión en estas condiciones mencionadas. Por este motivo, en este trabajo se han desarrollado diferentes modelos e indicadores orientados al diagnóstico y control de la combustión tanto en condiciones normales como anormales. Para los casos de combustión normal, se ha desarrollado un modelo de combustión, cuyo objetivo es estimar la media de la evolución de la fracción de la masa quemada y la presión dentro del cilindro. Se implementó un observador, basado en la señal de knock, con la finalidad de mejorar la estimación en condiciones transitorias y poder aplicar así el modelo a diferentes tipos de combustibles. También se presenta un modelo de variabilidad cíclica, en el cual, a partir del modelo de combustión, se propaga una distribución en dos de los parámetros de dicho modelo. Ambos modelos han sido aplicados para un motor de encendido provocado y un motor de combustión de encendido por chorro turbulento. En los casos de combustión anormal, se ha incluido un análisis de la resonancia dentro de la cámara de combustión, en donde también se desarrollaron dos modelos capaces de estimar la evolución de la resonancia. Estos modelos, tanto para condiciones normales como anormales, se utilizaron para el diagnóstico de la combustión. Por una parte, para la detección de knock, en donde tres estrategias de detección de knock fueron desarrolladas: dos basadas en el sensor de presión en cámara y una en el sensor de knock. Por otra parte, se realizó una aplicación de un modelo de resonancia para la mejora de la estimación de la masa atrapada a partir de la resonancia. Finalmente, para mostrar el potencial de los modelos de diagnóstico, dos aplicaciones a control se desarrollaron: una para el control de knock a través de la actuación de la chispa, y otra para el control de gases residuales, a través de la actuación de la distribución variable, realizando paralelamente una optimización de la combustión a través de la actuación de la chispa. / [CA] Impulsada per les regulacions en matèria d'emissions i CO2 la indústria automotriu a desenvolupat diferents tecnologies inovadore. Aquestes tecnologies inclouen combustibles alternatius i nous modes de combustió, entre altres. D'ací sorgix la necessitat posar en pràctica nous mètodes per al control de la combustió. En aquest context, el present trevall proposa diferents models i indicadors orientats al diagnòstic i control de la combustió tant en condicions normals com anormals. Per als casos de combustió normal, es proposa un model de combustió, l'objectiu del qual és estimar la mitjana de l'evolució de la fracció de la massa cremada i la pressió dins del cilindre. Es va implementar un observador, basat en la senyal de knock, amb la finalitat de millorar l'estimació en condicions transitòries i poder aplicar així el model a diferents tipus de combustibles. També es presenta un model de variabilitat cíclica, en el qual, a partir del model de combustió, es propaga una distribució en dos dels parametres del dit model. Ambdós models han sigut aplicats a un motor d'encesa provocada i un motor de combustió d'encesa per doll turbulent. Als casos de combustió anormal, s'ha inclos un anàlisi de la ressonància dins de la cambra de combustió, on també es van desenvolupar dos models capaços d'estimar l'evolució de la ressonància. Aquests models, tant per a condicions normals com anormals, s'utilitzen per al diagnòstic de la combustió. Per una part, per a la detecció de knock, on tres estratègies de detecció de knock s'han desenvolupat: dues basades en el sensor de pressió a la cambra de combustió i una altra basada en el sensor de knock. Per altra part, es va realitzar una aplicació d'un model de ressonància per a la millora de l'estimació de la massa atrapada a partir de la ressonància. Finalment, per a mostrar el potencial dels models de diagnòstic, dos aplicacions de control es van desenvolupar: una per al control de knock a través de l'actuació de l'espurna, i una altra per al control de gasos residuals, a través de l'actuació de la distribució variable, realitzant paral·lelament una optimització de la combustió a través de l'actuació de l'espurna. / [EN] The need to satisfy emissions and CO2 regulations is pushing the automotive industry to develop different innovative technologies. These technologies include alternative fuels and new modes of combustion, among others. Therefore, the need for the development of new methods for combustion control in these mentioned conditions arises. For this reason, in this work different models and indicators have been developed aimed at the diagnosis and control of combustion in both normal and abnormal conditions. For normal combustion cases, a combustion model has been developed, the objective of this model is to estimate the mean of evolution of the mass fraction burned and the in-cylinder pressure. An observer had been implemented, based on knock sensor signal, in order to improve the estimation in transient conditions and also to be able to make use of the model with different fuels. A cyclic variability model is also presented, where from the combustion model, a probability distribution is propagated over two of the parameters of such model. Both models had been applied for a spark ignition engine and a turbulent jet ignition combustion engine. For the abnormal combustion cases, an analysis of the resonance within the combustion chamber had been included, where two models capable of estimating the evolution of the resonance were also developed. These models, for both normal and abnormal conditions, were used for the diagnosis of combustion: on the one hand, for knock recognition, where three knock detection strategies were developed: two based on the in-cylinder pressure sensor and one on the knock sensor. On the other hand, an application of a resonance model was carried out in order to improve the estimation of the trapped mass from the resonance excitation. Finally, to show the potential of such models and applications, two control strategies were developed: one for the control of knock through the actuation of the spark advance, and a second for the control of residual gases, through the actuation of the variable valve timing, while optimizing the combustion through the actuation of the spark advance. / El trabajo desarrollado en esta tesis ha sido posible gracias a la financiación de la Generalitat Valenciana y el fondo social europeo a través de la beca 132 GRISO- LIAP/2018/132 y BEFPI/2021/042. / Jiménez, IA. (2022). Development of Combustion Indicators for Control of Multi-Fuel Engines Based on New Combustion Concepts [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181561
322

Influence of Inter-Jet Spacing on the Diesel Spray Formation and Combustion

Montiel Prieto, Tomás Enrique 25 March 2022 (has links)
[ES] La creciente aversión pública contra los motores de combustión interna ha llevado a un fuerte deseo de cambio hacia fuentes de energía renovables y más limpias. Sin embargo, todavía es difícil reemplazar los combustibles líquidos derivados del petróleo como fuente primaria de energía, principalmente debido a su gran disponibilidad, confiabilidad, y asequibilidad. Por lo tanto, la comunidad científica debe mantener los esfuerzos para aumentar la eficiencia de estos motores en beneficio de la sociedad. Con respecto a los motores diésel, una técnica implementada ha sido aumentar el número de orificios de salida del inyector y reducir sus diámetros, mejorando el proceso de mezcla aire/combustible. Sin embargo, a medida que aumenta el número de orificios en la boquilla, también aumenta la proximidad entre ellos, lo que lleva a una reducción en el espacio disponible para que cada chorro se desarrolle sin interactuar con los chorros adyacentes. Esta interacción podría afectar el evento de combustión y sus implicaciones no se han definido por completo. De esta manera, la presente tesis tuvo como objetivo analizar la influencia del espaciamiento entre chorros en el desarrollo de la inyección, y mejorar la metodología empleada en el instituto para estudiar el chorro en inyectores multi-orificios, teniendo en cuenta las interacciones entre chorros. Con este objetivo, Continental fabricó dos inyectores diésel idénticos excepto por la distribución geométrica de los orificios de salida de cada boquilla, ya que se destinaron específicamente a estudiar la influencia del espaciamiento entre chorros en el evento de inyección. Concretamente, el primer inyector permitió estudiar, durante el mismo evento de inyección, el desarrollo de un chorro aislado en un lado de la boquilla y, en la cara opuesta, cinco chorros con un espaciamiento entre ellos de 30°. Por otro lado, el segundo inyector tiene dos distribuciones de orificios adicionales, por lo que un total de tres configuraciones de espaciado entre chorros (30° - 36° - 45°) fueron comparadas con el rendimiento del chorro aislado (espaciado = 120°). Además, se probaron con éxito una nueva ventana óptica y un espejo de cerámica de alta temperatura. Con respecto al retraso de la ignición, los chorros con chorros vecinos tendieron a tener valores de retraso de la ignición iguales o ligeramente inferiores a los del chorro aislado en condiciones pobres de contorno (baja presión del raíl, temperatura, o densidad de la cámara). Por otro lado, el efecto contrario se observó al aumentar los valores de las condiciones de contorno, con valores de retraso de la ignición iguales o más altos para los chorros con chorros vecinos. No obstante, no se observó una tendencia clara, con interacciones complejas y múltiples factores afectando simultáneamente el evento de ignición. Sobre la longitud de levantamiento de llama, los resultados mostraron que al alcanzar cierta proximidad entre los chorros, la interacción entre ellos se convierte en un factor predominante en su comportamiento, y dicha longitud se reduce considerablemente. Por otro lado, a medida que aumentaba el espaciado entre chorros, la longitud se aproximaba gradualmente a la obtenida con el chorro aislado. En cuanto a la formación de hollín, los chorros con menor espaciado con sus chorros vecinos (30° y 36°) generalmente tuvieron mayor espesor óptico KL y valores máximos de masa de hollín para una condición de contorno dada, en comparación con el desarrollo del chorro aislado. Estas tendencias están en línea con los resultados de la longitud de levantamiento de llama observados, en los que los chorros estrechamente espaciados tuevieron una longitud más corta debido (posiblemente) al englobamiento de gases calientes. Esta reducción deterioraría el proceso de mezcla de aire/combustible y, en consecuencia, la combustión ocurriría en condiciones de mezcla más ricas que son propicias para la formación de hollín. / [CA] La creixent aversió pública contra els motors de combustió interna ha portat a un fort desig de canvi cap a fonts d'energia renovables i més netes. Tot i aixó, encara és difícil substituir els combustibles líquids derivats del petroli com a font primària d'energia, principalment per la seva gran disponibilitat, seguretat, i assequibilitat. Per tant, la comunitat científica ha de mantenir la investigació per tal d'augmentar l'eficiència d'aquests motors en benefici de la societat. Pel que fa als motors dièsel, una tècnica implementada ha estat augmentar el nombre d'orificis de sortida de l'injector i reduir els seus diàmetres, millorant el procés de barreja aire/combustible. No obstant això, a mesura que augmenta el nombre d'orificis a la tovera, també augmenta la proximitat entre ells, fet que porta a una reducció a l'espai disponible perquè cada raig es desenvolupi sense interactuar amb els dolls adjacents. Aquesta interacció podria afectar l'esdeveniment de la combustió i les seves implicacions no s'han definit del tot. D'aquesta manera, aquesta tesi va tenir com a objectiu analitzar la influència de l'espaiament entre dolls en el desenvolupament de la injecció, i millorar la metodologia emprada a l'institut per a estudiar els esdeveniments d'injecció d'injectors de múltiples orificis, tenint en compte les interaccions entre dolls. Amb aquest objectiu, Continental va fabricar dos injectors dièsel amb idèntic disseny intern excepte per la distribució geomètrica dels orificis de sortida de cada tovera, ja que es van destinar específicament a estudiar la influència de l'espaiament entre dolls a l'esdeveniment d'injecció. Concretament, el primer injector va permetre estudiar, durant el mateix esdeveniment d'injecció, el desenvolupament d'un raig solitari en un costat del tovera i, a la cara oposada, cinc raigs amb un espai entre ells de 30°. D'altra banda, el segon injector té dues distribucions d'orificis addicionals, aconseguint que un total de tres configuracions d'espaiat entre dolls (30°-36°-45°) es compararen amb el rendiment del raig solitari (espaiat = 120°). A més, es van provar amb èxit una nova finestra òptica i un mirall de ceràmica d'alta temperatura. Pel que fa al retard de la ignició, els dolls amb dolls adjacents van tendir a tenir valors de retard de la ignició iguals o lleugerament inferiors als del raig solitari en condicions pobres de contorn (baixa pressió del rail, temperatura, o densitat de la càmera). D'altra banda, l'efecte contrari es va observar augmentant els valors de les condicions de contorn, amb valors de retard de la ignició iguals o més alts per als dolls amb dolls adjacents. Tot i això, no es va apreciar un efecte constant, amb interaccions complexes i múltiples factors afectant simultàniament l'esdeveniment d'ignició. Sobre la longitud d'aixecament de flama, els resultats van mostrar que en assolir certa proximitat entre els dolls, la interacció entre ells es converteix en un factor predominant en el seu comportament, reduint-se considerablement aquesta longitud. D'altra banda, a mesura que augmentava l'espaiat entre dolls, la longitud s'aproximava gradualment a l'obtinguda amb el raig solitari. Quant a la formació de sutge, els raigs amb menor espaiat amb els seus raigs adjacents (30° i 36°) generalment van tenir més gruix òptic KL i valors màxims de massa de sutge per a una condició de contorn donada, en comparació amb el desenvolupament del raig solitari. Aquestes tendències estan aliniades amb els resultats de la longitud d'aixecament de flama observats, en què els dolls estretament espaiats van tenir una longitud més curta degut (possiblement) a l'englobament de gasos calents. Aquesta reducció deterioraria el procés de barreja d'aire/combustible i, en per tant, la combustió ocorreria en condicions de mescla més riques que són propícies per a la formació de sutge. / [EN] The growing public aversion to internal combustion engines has led to a strong desire to shift towards renewable and cleaner energy sources. However, it is still hard to replace petroleum-derived liquid fuels as the primary energy source, mainly due to their plenty of availability, reliability, and affordability. Then, efforts have to come from the research community to increase the efficiency of these engines for the benefit of society. Regarding diesel engines, one implemented technique has been to increase the number of outlet holes of the injector and reduce their diameters, enhancing the air/fuel mixing process. Nevertheless, as the number of holes in the nozzle increases, so does the proximity between them, leading to a reduction in the space available for each jet to develop without interacting with the neighbor sprays. This interaction could affect the combustion event, and its implications have not been entirely defined. Thus, the present thesis aimed to analyze the influence of inter-jet spacing on the injection development and enhance the methodology employed in the institute to study injection events of multi-holes injectors, accounting for the interactions between jets. To this end, two diesel injectors with six outlet orifices were manufactured by Continental with identical design, except for the geometric distribution of the outlet holes of each nozzle, as they were specifically allocated to study the influence of inter-jet spacing on the injection event. Concretely, the first injector allowed the study of the development of an isolated spray on one side and a spray with an inter-jet spacing of 30° on the other side during the same injection event. Moreover, the second injector has two additional orifices distributions, so a total of three inter-jet spacing configurations (30°- 36° - 45°) were compared to the performance of the isolated spray (spacing = 120°). Additionally, a novel optical window and high-temperature ceramic mirror were successfully tested. Regarding the ignition delay, sprays with neighbor jets tended to have equal or slightly smaller ignition delay values under poor mixing and ignition conditions (low rail pressure, chamber temperature, or chamber density conditions). On the other hand, the opposite effect was generally observed as the boundary conditions were overall increased, with equal or higher ignition delay values within sprays with neighbor jets, compared to that of the isolated spray. Nonetheless, no clear trend was defined, with complex interactions and multiple factors simultaneously affecting the ignition event. On the lift-off length, the results showed that after certain proximity between sprays is reached, the interaction between the jets becomes a predominant factor in their behavior, and the lift-off length is considerably reduced. Moreover, as the inter-jet spacing increases, the performance gradually approaches that obtained from the isolated spray. Respecting the soot formation, the sprays with closely spaced neighbor jets (30° and 36°) generally had higher optical thickness KL and peak soot mass values for a given boundary condition when compared to the development of the isolated spray. These trends are in line with the lift-off length results observed, in which the closely spaced jets had a shorter lift-off length due to (plausibly) hot gases re-entrainment. This shortening would deteriorate the air/fuel mixing process and, consequently, combustion happens in richer mixture conditions that are suitable for soot formation. / I want to express my gratitude to Generalitat Valenciana and European Social Fund for the financial support provided through the research grant (ACIF/2018/122) / Montiel Prieto, TE. (2022). Influence of Inter-Jet Spacing on the Diesel Spray Formation and Combustion [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181608
323

Development of Integrated Models for Thermal Management in Hybrid Vehicles

Dreif Bennany, Amin 12 June 2023 (has links)
[ES] En los últimos años, la industria de la automoción ha hecho un gran esfuerzo para producir sistemas de propulsión más eficientes y menos contaminantes sin menguar su rendimiento. Las nuevas regulaciones impuestas por las autoridades han empujado a la industria hacia la electrificación de los sistemas de propulsión mientras que las tecnologías desarrolladas para el sistema de propulsión convencional, basado en motores de combustión interna alternativos (MCIA), ya no son suficientes. El modelado numérico ha demostrado ser una herramienta indispensable para el diseño, desarrollo y optimización de sistemas de gestión térmica en trenes motrices electrificados, ahorrando costes y reduciendo el tiempo de desarrollo. La gestión térmica en los MCIA siempre ha sido importante para mejorar el consumo, las emisiones y la seguridad. Sin embargo, es todavía más importante en los sistemas de propulsión híbridos, a causa de la complejidad del sistema y al funcionamiento intermitente del MCIA. Además, los trenes motrices electrificados tienen varias fuentes de calor (es decir, MCIA, batería, máquina eléctrica) con diferentes requisitos de funcionamiento térmico. El objetivo principal de este trabajo ha sido desarrollar modelos térmicos para estudiar la mejora de los sistemas de gestión térmica en sistemas de propulsión electrificados (es decir, vehículo híbrido), estudiando y cuantificando la influencia de diferentes estrategias en el rendimiento, la seguridad y la eficiencia de los vehículos. La metodología desarrollada en este trabajo consistió tanto en la realización de experimentos como en el desarrollo de modelos numéricos. De hecho, se llevó a cabo una extensa campaña experimental para validar los diferentes modelos del tren motriz electrificado. Los datos obtenidos de las campañas experimentales sirvieron para calibrar y validar los modelos así como para corroborar los resultados obtenidos por los estudios numéricos. En primer lugar, se estudiaron las diferentes estrategias de gestión térmica de manera independiente para cada componente del tren motriz. Para el MCIA se estudió el uso de nanofluidos, el aislamiento del colector y puertos de escape, así como el cambio de volumen de sus circuitos hidráulicos. De igual forma, se evaluó el impacto de diferentes estrategias para la mejora térmica de las baterías. Además, el modelo de máquina eléctrica se utilizó para desarrollar pruebas experimentales que emulaban el daño térmico producido en ciclos reales de conducción. En segundo lugar, los modelos de tren motriz se integraron utilizando un estándar de co-simulación para evaluar el impacto de un sistema de gestión térmica integrado. Finalmente, se implementó un nuevo control del sistema de gestión de energía para evaluar el impacto de considerar el estado térmico del MCIA al momento de decidir la distribución de potencia del vehículo híbrido. Los resultados han demostrado que el uso de nanofluidos tiene un impacto muy limitado tanto en el MCIA como en el comportamiento térmico de la batería. Además, también mostraron que al reducir el volumen de refrigerante en un 45 %, la reducción en el tiempo de calentamiento del MCIA y el consumo de combustible en comparación con el caso baso fue del 7 % y del 0.4 %, respectivamente. Además, para condiciones de frio (7ºC), el impacto fue todavía mayor, obteniendo una reducción del tiempo de calentamiento y del consumo de combustible del 13 % y del 0.5 % respectivamente. Por otro lado, los resultados concluyeron que durante el calentamiento del MCIA, el sistema integrado de gestión térmica mejoró el consumo de energía en un 1.74 % y un 3 % para condiciones de calor (20ºC) y frío (-20ºC), respectivamente. Esto se debe al hecho que el sistema de gestión térmica integrado permite evitar la caída de temperatura del MCIA cuando el sistema de propulsión está en manera eléctrica pura. / [CA] En els últims anys, la indústria de l'automoció ha fet un gran esforç per a produir sistemes de propulsió més eficients i menys contaminants sense minvar el seu rendiment. Les noves regulacions imposades per les autoritats han espentat a la indústria cap a l'electrificació dels sistemes de propulsió mentre que les tecnologies desenvolupades per al sistema de propulsió convencional, basat en motors de combustió interna alternatius (MCIA), ja no són suficients. El modelatge numèric ha demostrat ser una eina indispensable per al disseny, desenvolupament i optimització de sistemes de gestió tèrmica en trens motrius electrificats, estalviant costos i reduint el temps de desenvolupament. La gestió tèrmica en els MCIA sempre ha sigut important per a millorar el consum, les emissions i la seguretat. No obstant això, és encara més important en els sistemes de propulsió híbrids, a causa de la complexitat del sistema i al funcionament intermitent del MCIA. A més, els trens motrius electrificats tenen diverses fonts de calor (és a dir, MCIA, bateria, màquina elèctrica) amb diferents requisits de funcionament tèrmic. L'objectiu principal d'aquest treball va ser desenvolupar models tèrmics per a estudiar la millora dels sistemes de gestió tèrmica en sistemes de propulsió electrificats (és a dir, vehicle híbrid), estudiant i quantificant la influència de diferents estratègies en el rendiment, la seguretat i l'eficiència dels vehicles. La metodologia desenvolupada en aquest treball va consistir tant en la realització d'experiments com en el desenvolupament de models numèrics. De fet, es va dur a terme una extensa campanya experimental per a validar els diferents models del tren motriu electrificat. Les dades obtingudes de les campanyes experimentals van servir per a calibrar i validar els models així com per a corroborar els resultats obtinguts pels estudis numèrics. En primer lloc, es van estudiar les diferents estratègies de gestió tèrmica de manera independent per a cada component del tren motriu. Per al MCIA es va estudiar l'us de nanofluids, l'aïllament del col·lector i ports d'eixida així com el canvi de volum dels seus circuits hidràulics. D'igual forma, es va avaluar l'impacte de diferents estratègies per a la millora tèrmica de les bateries. A més, el model de màquina elèctrica es va utilitzar per a desenvolupar proves experimentals que emulaven el mal tèrmic produït en cicles reals de conducció. En segon lloc, els models de tren motriu es van integrar utilitzant un estàndard de co-simulació per a avaluar l'impacte d'un sistema de gestió tèrmica integrat. Finalment, es va implementar un nou control del sistema de gestió d'energia per a avaluar l'impacte de considerar l'estat tèrmic del MCIA al moment de decidir la distribució de potència del vehicle híbrid. Els resultats han demostrat que l'us de nanofluids té un impacte molt limitat tant en el MCIA com en el comportament tèrmic de la bateria. A més, també van mostrar que en reduir el volum de refrigerant en un 45 %, la reducció en el temps de calfament del MCIA i el consum de combustible en comparació amb el cas base va ser del 7 % i del 0.4 %, respectivament. A més, per a condicions de fred (-7ºC), l'impacte va ser encara major, obtenint una reducció del temps de calfament i del consum de combustible del 13 % i del 0.5 % respectivament. D'altra banda, els resultats van concloure que durant el calfament del MCIA, el sistema integrat de gestió tèrmica va millorar el consum d'energia en un 1.74 % i un 3 % per a condicions de calor (20ºC) i fred (-20ºC), respectivament. Això es deu al fet que el sistema de gestió tèrmica integrat permet evitar la caiguda de temperatura del MCIA quan el sistema de propulsió està en manera elèctrica pura. / [EN] In recent years, the automotive industry has made a great effort to produce more efficient and less polluting propulsion systems without diminishing their performance. The new regulations imposed by the authorities have pushed the industry towards the electrification of powertrains while, technologies developed for the conventional propulsion system based on alternative internal combustion engines (ICEs), are no longer sufficient. Numerical modeling has proven to be an indispensable tool for the design, development and optimization of thermal management systems in electrified powertrains, saving costs and reducing development time. Thermal management in ICEs has always been important for improving consumption, emissions and safety. However, it is even more important in hybrid powertrains, due to the complexity of the system and the intermittent operation of the ICE. In addition, electrified powertrains have various heat sources (i.e., ICE, battery, Electric machine) with different thermal operating requirements. The main objective of this work was to develop thermal models to study the improvement of thermal management systems in electrified powertrains (i.e., hybrid electric vehicle), shedding light and quantifying the influence of different strategies on performance, safety and efficiency of the vehicles. The methodology developed in this paper consisted both in carrying out experiments and in developing numerical models. In fact, an extensive experimental campaign was carried out to validate the various models of the electrified powertrain. The data obtained from the experimental campaigns served to calibrate and validate the models as well as to corroborate the results obtained by the numerical studies. Firstly, the different thermal management strategies were studied independently for each component of the powertrain. For the ICE, the use of nanofluids, insulation of exhaust manifold and ports as well as the volume change of its hydraulic circuits were studied. Similarly, the impact of different strategies for the thermal improvement of batteries was evaluated. Furthermore, the electric machine model was used for developing experimental tests which emulated the thermal damage produced in real driving cycles. Secondly, the powertrain models were integrated using a co-simulation standard to assess the impact of an integrated thermal management system. Finally, a new control energy management system was implemented to assess the impact of considering the ICE thermal state when deciding the power split of the hybrid vehicle. The results have shown that the use of nanofluids has a very limited impact on both the ICE and the battery's thermal behaviour. In addition, they also showed that by reducing the volume of coolant by 45 %, the reduction in ICE warm up time and fuel consumption compared to the base case were 7 % and 0.4 %, respectively. In addition, for cold conditions (-7ºC), the impact was even greater, obtaining a reduction in warm up time and fuel consumption of 13 % and 0.5 % respectively. On the other hand, the results concluded that during the warming of ICE, the integrated thermal management system improved energy consumption by 1.74 % and 3 % for warm (20ºC) and cold (-20ºC) conditions, respectively. This is because the integrated TMS makes it possible to prevent the ICE temperature drop when the powertrain is in pure electric mode. Finally, significant gains during Worldwide harmonized Light vehicles Test Cycles (WLTC) and Real Driving Emissions (RDE) cycles were observed when the ICE thermal state was chosen when deciding the power distribution. / The author would like to sincerely acknowledge the founding support pro- vided by Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital in the framework of the Ayuda Predoctoral GVA. (ACIF/2020/234). Additionally the author would also acknowledge the support provided by Renault S.A.S. / Dreif Bennany, A. (2023). Development of Integrated Models for Thermal Management in Hybrid Vehicles [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194060
324

Computational study of Formation and Development of Liquid Jets in Low Injection Pressure Conditions. Focus on urea-water solution injection for exhaust gas aftertreatment.

Marco Gimeno, Javier 23 October 2023 (has links)
[ES] La creciente preocupación sobre el efecto de la emisión de gases nocivos provenientes de motores de combustión interna alternativos (ICE) a la atmósfera ha llevado a los gobiernos a lo ancho del planeta a limitar la cantidad de dichas emisiones, particularmente en Europa a través de las normas EURO. La dificultad en cumplir dichas limitaciones ha llevado a la industria automovilística a cambiar el foco de motores de encendido por compresión (CI) o provocado (SI) hacia la electrificación o los combustibles libres de carbono. Sin embargo, esta transición no se puede llevar a cabo de manera sencilla en el corto y medio plazo, mientras que combustibles libres de carbono como el Hidrógeno (H2 ) o el Amoniaco (NH3 ) siguen produciendo algunos contaminantes como los Óxidos de Nitrógeno (NOx ), con los cuales hay que lidiar. Estas emisiones pueden ser particularmente dañinas para el ser humano ya que incrementan el riesgo de cáncer de pulmón. La Reducción Catalítica Selectiva (SCR) ha demostrado ser una tecnología eficaz para la reducción de este contaminante en particular. A través de una inyección de una Solución de Urea-Agua, junto con la energía térmica de los gases de escape, se genera una cantidad suficiente de NH 3 capaz de neutralizar los indeseados NOx en un catalizador de reducción. Con la inclusión de los SCR en automóviles ligeros además de su presencia tradicional en automóviles pesados, los SCR han sido el foco de la comunidad científica para mejorar el entendimiento de su principio de actuación, y mejorar su eficiencia en un entorno legislativo en el que los limites de emisión se han estrechado enormemente. Esta Tesis intenta ser parte de ese esfuerzo científico en caracterizar el proceso de inyección de UWS en su totalidad a través de un entorno computacional. El presente estudio tiene como objetivo proveer de un mejor entendimiento del proceso de atomización y degradación sufrido por los chorros de UWS. Las dinámicas no estacionarias que se dan lugar en la zonas cercana del chorro, añadido a la gran influencia de las características internas del inyector sobre el desarrollo del spray hacen que los métodos experimentales sean complicados para poder entender dicho proceso. Por otro lado, la Mecánica de Fluidos Computacional (CFD) presenta una alternativa. Para el propósito de esta Tesis, el CFD ha sido utilizado para caracterizar los sprays de SCR. Se intenta desarrollar y seleccionar los modelos más apropiados a chorros de baja velocidad, y establecer un conocimiento Una vez adquiridos dichos métodos, los mecanismos principales de rotura del chorro y de degradación de la urea se han analizan. En ese sentido, el uso de técnicas experimentales podrían ser sustituídos en el futuro para esta aplicación. Los métodos CFD son validados tanto en el campo cercano como en el lejano. Para el campo cercano, el tratamiento multi-fase se lleva a cabo a través de métodos de Modelo de Mezclas, o el método Volume-Of-Fluid. A través de ellos, la caracterización hidráulica de dos reconstrucciones del inyector de UWS se lleva a cabo. Subsiguientes análisis se llevan a cabo sobre las dinámicas de rotura de la vena líquida, descubriendo que mecanismos rigen el proceso. El estudio de campo lejano usa un Discrete Droplet Model (DDM) para lidiar con las fases líquidas y gaseosas. En él, la evaporación del agua y el proceso de termólisis de la urea han sido considerados y comparados con resultados experimentales con el fin de obtener una metodología fiel para su caracterización. Todo el conocimiento adquirido se aplica más tarde a un Close-Coupled SCR, en el cual condiciones de trabajo realista han sido consideradas. Además, una herramienta llamada Maximum Entropy Principle (MEP) es presentada. Por tanto, esta Tesis aporta una metodología valiosa capaz de predecir tanto el campo cercano como el lejano de chorros de UWS de una manera precisa. / [CA] La creixent preocupació sobre el efecte de l'emissió de gasos nocius provenients the motors de Combustió Interna Alternatius (ICE) a l'atmosfera ha dut als governs de tot el planeta a limitar la quantitat d'aquestes emisions, particularment a Europa mitjant les normes EURO. La dificultat de complir aquestes limitacions ha portat a l'industria automovilística a cambiar el focus de motors d'encedut per compresió (CI) o provocat (SI) cap a la electrificació o els combustibles lliures de carbó. No obstant això, aquesta transició no es pot dur a terme de manera senzilla , mentres que els combustibles lliures de carbó como l'Hidrogen (H2 ) o l'Amoniac (NH3 ) seguirien produint contaminants como els Óxids de Nitrogen (NOx ), amb els quals n'hi ha que bregar. Estes emissions poden ser particularment nocives per a l'esser humà ja que incrementen el risc de càncer de pulmó. La Reducció Catalítica Selectiva (SCR) ha demostrat ser una tecnología eficaç per a la reducció d'este contaminant en particular. Mitjançant una injecció d'una Solució D'Urea i Aigua, junt a l'energía térmica dels gasos d'fuita, es pot generar una quantitat suficiente de NH 3 capaç de neutralitzar els indesitjats NO x a un catalitzador de reducció. Amb l'inclusió dels SCR en automòvils lleugers a més de la seua tradicional presència en automòvils pesats, els SCR han segut el foc per a mijorar l'enteniment del seu principi d'actuació, i mijorar la seua eficiencia. Este estudi té como a objectiu proveir d'un mijor entenement del procés d'atomizació y degradació patit pels dolls de UWS. Les dinàmiques no estacionaries que es donen lloc en la zona propenca al doll, afegit a la gran influència de les característiques internes del injector sobre el desentroll de l'esprai, fan que els métods experimentals siguen complicats d'aplicar per entendre dit procés. Per un altre costat, la Mecànica de Fluïts Computacional (CFD) supon una alternativa que té certes avantatges. Per al propòsit d'esta Tesi, el CFD ha sigut utilitzat com la principal metodología per a caracteritzar elsesprais de SCR. Per mitjà de dits métodes, la Tesi vol desentrollar i seleccionar els models més apropiats que mitjos s'adapten a sprays de baixa velocitat, i establir un coneiximent per a posteriors estudis desentrollats sobre la mateixa temàtica. Una volta adquirits dits métodes, els mecanismes principals de trencament del doll, així com els de degradació de l'urea en amoníac s'analitzaran. En aquest sentit, l'us de técniques experimentals podría no ser utilitzat més en el futur per aquesta aplicació.Els métods CFD son aplicats i validats tant el el camp propenc com en el llunyà. Per al camp propenc, el tractament multi-component es porta a terme a través de métodes Eulerians-Eulerians, com el Model de Mescles, o el métode Volume-Of-Fluid. La caracterització hidràulica de dos reconstruccions de l'injector es porta a terme, els resultats del qual són comparats amb resultats experimentals. Subsegüents anàlisis es porten a terme sobre les dinàmiques de trencament de la vena líquida, descobrint qué mecanismes regeixen el procés. L'estudi de camp llunyà usa un Discrete Droplet Model (DDM) per a bregar en la fase líquida i gaseosa. En ell, l'evaporació del aigua y el procés de termòlisis de l'urea han sigut considerats i comparats amb el resultats experimentals amb la finalitat d'obtindre una metodología fidel per a la seua caracterització. Tot el coneixement obtingut s'aplica més tard a un Close-Coupled SCR, en el qual condicions de treball realistes han sigut considerades. Dels resultats obtinguts dels distints estudis, una ferramenta adicional anomenada Maximum Entropy Principle (MEP),capaç de predir el fenomen d'atomització dels doll de UWS sense la necessitat de realitzar simulacions del camp propenc, es presentat. Per tant, esta Tesi aporta una metodología capaç de predir tant el camp proper como el llunyà d'una manera precisa. / [EN] The increasing awareness of the effect of emitting harmful gases from Internal Combustion Engines (ICE) into the atmosphere has driven the governments across the globe to limit the amount of these emissions, par ticularly in Europe through the EURO norms. The difficulty to meet such limitations has driven the automotive industry to shift from traditional Compression Ignited (CI) or Spark Ignited (SI) engines toward electrification or carbon-free fuels. Nonetheless, this transition will not be easily done in the short and medium time frames, while carbon-free fuels such as Hydrogen (H2 ) and Ammonia (NH3 ) will keep producing certain pollutants such as Nitrogen Oxides (NOx ) which need taking care of. These emissions can be particularly hazardous for humans, increasing the risk of developing lung cancer. Selective Catalytic Reduction (SCR) is an effective technology for reducing this specific ICE contaminant. An injection of a Urea-Water Solution (UWS), together with the thermal energy of the combustion gases can generate a sufficient amount of NH 3 capable of neutralizing the unwanted NO x in a catalyst. With the fitting of SCR systems within light-duty applications, in addition to their traditional presence on heavy-duty usage, SCR has been on the focus to understand their working principle and improve their efficiency . This Thesis tries to become part of that scientific ensemble by characterizing the whole UWS injection process within a computational framework. The present research aims to provide a better understanding of the atomizing and degradation processes undergone by the UWS sprays. The transient dynamics taking place in the near-field region, added to the great influence of the inner-injector characteristics on the development of the spray make experimental approaches on such sprays challenging in providing such knowledge. Computational Fluid Dynamics (CFD) provide an alternative that has certain advantages. For this Thesis they have been adopted as the main methodology on characterizing SCR sprays. The Thesis tries to develop and select the appropriate models that best suit low-velocity sprays. With the suitable methods that best predict these sprays, the main jet breakup mechanisms, together with the urea-to-ammonia transformation will have their behavior analyzed. In that way, experimental techniques could be avoided for such applications. CFD is applied and validated both in the near-field and far-field regions. For the near-field, multi-component flows are treated through Eulerian-Eulerian such as the Mixture Model or the Volume-Of-Fluid method. Through them, a hydraulic characterization on two recon structions of the UWS injector is performed, with results compared with experimental data. Further analysis is done on the jet-to-droplet dynamics, assessing which mechanisms drove the process. The far-field analy sis uses a Discrete Droplet Model (DDM) for dealing with the gas and liquid phases. In it, the evaporation of water and the thermolysis process of the urea have been considered and again compared with experimental results to have a faithful methodology for its characterization. All the acquired knowledge has been later applied to a commercial Close-Coupled SCR, in which real-working conditions have been considered. From the results obtained from several studies, an additional tool called Maximum Entropy Principle (MEP), capable of predicting the UWS spray atomization phenomenon without the need to perform near-field simulations, has been provided. Accordingly, this Thesis provides a valuable methodology capable of predicting the near-field and far-field dynamics accurately thanks to its validation against experimental results from literature. Additionally, the MEP tool can be used independently for computational and experimental works to predict the performance of UWS atomizers.The work carried out presents a significant leap in the application of CFD tools in predicting low-velocity sprays. / Javier Marco Gimeno has been founded through a grant from the Government of Generalitat Valenciana with reference ACIF/2020/259 and financial support from the European Union. These same institutions, Government of Generalitat Valenciana and The European Union, supported through a grant for pre-doctoral stays out of the Comunitat Valenciana with reference CIBEFP/2021/11 the research carried out during the stay at Energy Systems, Argonne National Laboratory, United States of America. / Marco Gimeno, J. (2023). Computational study of Formation and Development of Liquid Jets in Low Injection Pressure Conditions. Focus on urea-water solution injection for exhaust gas aftertreatment [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/198699
325

OPTIMIZING PORT GEOMETRY AND EXHAUST LEAD ANGLE IN OPPOSED PISTON ENGINES

Beau McAllister Burbrink (11792630) 20 December 2021 (has links)
<div>A growing global population and improved standard of living in developing countries have resulted in an unprecedented increase in energy demand over the past several decades. While renewable energy sources are increasing, a huge portion of energy is still converted into useful work using heat engines. The combustion process in diesel and petrol engines releases carbon dioxide and other greenhouse gases as an unwanted side-effect of the energy conversion process. By improving the efficiency of internal combustion engines, more chemical energy stored in petroleum resources can be realized as useful work and, therefore, reduce global emissions of greenhouse gases. This research focused on improving the thermal efficiency of opposed-piston engines, which, unlike traditional reciprocating engines, do not use a cylinder head. The cylinder head is a major source of heat loss in reciprocating engines. Therefore, the opposed-piston engine has the potential to improve overall engine efficiency relative to inline or V-configuration engines.</div><div><br></div>The objective of this research project was to further improve the design of opposed-piston engines by using computational fluid dynamics (CFD) modeling to optimize the engine geometry. The CFD method investigated the effect of intake port geometry and exhaust piston lead angle on the scavenging process and in-cylinder turbulence. After the CFD data was analyzed, scavenging efficiency was found insensitive to transfer port geometry and exhaust piston lead angle with a maximum change of 0.61%. Trapping efficiency was altered exclusively by exhaust piston lead angle and changed from 18% to 26% as the lead angle was increased. The in-cylinder turbulence parameters of the engine (normalized swirl circulation, normalized tumble circulation, and normalized TKE) experienced more complex relationships. All turbulence parameters were sensitive to changing transfer port geometry and exhaust piston lead angle. Some examples of trends seen during the analysis include: an increase in normalized swirl circulation from 0.01 to 4.45 due to changes in swirl angle, a change in normalized tumble circulation from -28.52 to 21.11 as swirl angle increased, and an increase in normalized tumble circulation from 14.20 to 33.68 as exhaust piston lead angle was increased. Based on the present work, an optimum configuration was identified for a swirl angle of 15°, a tilt angle of 10°, and an exhaust piston lead angle of 20°. Future work includes expanding the numerical model’s domain to support a complete cylinder-port configuration, adding combustion products to the diffusivity equation in the UDF, and running additional test cases to describe the entire input space for the sensitivity analysis.<br>
326

Numerical study of hot jet ignition of hydrocarbon-air mixtures in a constant-volume combustor

Karimi, Abdullah January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Ignition of a combustible mixture by a transient jet of hot reactive gas is important for safety of mines, pre-chamber ignition in IC engines, detonation initiation, and in novel constant-volume combustors. The present work is a numerical study of the hot-jet ignition process in a long constant-volume combustor (CVC) that represents a wave-rotor channel. The mixing of hot jet with cold mixture in the main chamber is first studied using non-reacting simulations. The stationary and traversing hot jets of combustion products from a pre-chamber is injected through a converging nozzle into the main CVC chamber containing a premixed fuel-air mixture. Combustion in a two-dimensional analogue of the CVC chamber is modeled using global reaction mechanisms, skeletal mechanisms, and detailed reaction mechanisms for four hydrocarbon fuels: methane, propane, ethylene, and hydrogen. The jet and ignition behavior are compared with high-speed video images from a prior experiment. Hybrid turbulent-kinetic schemes using some skeletal reaction mechanisms and detailed mechanisms are good predictors of the experimental data. Shock-flame interaction is seen to significantly increase the overall reaction rate due to baroclinic vorticity generation, flame area increase, stirring of non-uniform density regions, the resulting mixing, and shock compression. The less easily ignitable methane mixture is found to show higher ignition delay time compared to slower initial reaction and greater dependence on shock interaction than propane and ethylene. The confined jet is observed to behave initially as a wall jet and later as a wall-impinging jet. The jet evolution, vortex structure and mixing behavior are significantly different for traversing jets, stationary centered jets, and near-wall jets. Production of unstable intermediate species like C2H4 and CH3 appears to depend significantly on the initial jet location while relatively stable species like OH are less sensitive. Inclusion of minor radical species in the hot-jet is observed to reduce the ignition delay by 0.2 ms for methane mixture in the main chamber. Reaction pathways analysis shows that ignition delay and combustion progress process are entirely different for hybrid turbulent-kinetic scheme and kinetics-only scheme.

Page generated in 0.0289 seconds