• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 581
  • 350
  • 189
  • 67
  • 33
  • 17
  • 16
  • 10
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1543
  • 416
  • 323
  • 204
  • 179
  • 156
  • 154
  • 150
  • 120
  • 119
  • 115
  • 107
  • 105
  • 103
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Aspect Ratio Modulations of Fully Conjugated Rod-like Polymer Electrolyte for Enhanced Three-dimensionally Isotropic Ionic Conductivity

Wang, Jia-Huei 02 October 2009 (has links)
This study utilized polycondensation reaction to synthesize fully conjugated rod-like polymer dihydroxy-PBI. Chemical derivatizations were applied to attach pendants of propane sulfonic coil for dihydroxy-PBI-PS and to attach aromatic phenylene ring with Li ionic moiety for dihydroxy-PBI-AS. The attachment of pendants for dihydroxy-PBI-PS was 42.27 % and for dihydroxy-PBI-AS was only for 0.04 % causing by stereo hindrance of this molecule. These polymers seemed to have good thermal stability. Dihydroxy-PBI started to show degradation at 467.8 oC and retained 60.5 wt. % at 800 oC. Derivatized dihydroxy- PBI-PS and dihydroxy-PBI-AS lost their pendants at 295.3 oC and 314.4 oC, respectively. Dihydroxy-PBI was cast into thin film. Upon doping with lithium salt of LiClO at 2.02 wt. %, dihydroxy-PBI cast film showed the highest room-temperature dc conductivity parallel to the film (£m¡ü) of 1.71 x 10-4 S/cm and perpendicular to the film (£m¡æ) of 1.49 x 10-5 S/cm. For dihydroxy-PBI-PS cast film, the highest conductivity was at 0.49 wt. % of LiClO4 with £m¡ü of 1.05 x 10-3 S/cm and £m¡æ of 1.05 x 10-4 S/cm. For dihydroxy-PBI-AS cast film, the highest conductivity was at 2.02 wt. % of LiClO4 with £m¡ü of 1.32 x 10-3 S/cm and £m¡æ of 2.26 x 10-5 S/cm. From scanning electron microscopy and wide-angle x-ray scattering, it was learned that cast films of dihydroxy-PBI and dihydroxy-PBI-AS had anisotropic layered structure parallel to the film, and that of dihydroxy-PBI-PS showed less of this anisotropy.
242

Ionic Liquid Electrolytes for Photoelectrochemical Solar Cells

Gamstedt, Heléne January 2005 (has links)
<p>Potential electrolytes for dye-sensitized photoelectrochemical solar cells have been synthesized and their applicability has been investigated. Different experimental techniques were used in order to characterize the synthesized electrolytes, such as elemental analysis, electrospray ionisation/mass spectrometry, cyclic voltammetry, dynamic viscosity measurements, as well as impedance, Raman and NMR spectroscopy. Some crystal structures were characterized by using single crystal X-ray diffraction.</p><p>In order to verify the eligibility of the ionic compounds as electrolytes for photoelectrochemical solar cells, photocurrent density/photovoltage and incident photon-to-current conversion efficiency measurements were performed, using different kinds of light sources as solar simulators. In electron kinetic studies, the electron transport times in the solar cells were investigated by using intensitymodulated photocurrent and photovoltage spectroscopy. The accumulated charge present in the semiconductor was studied in photocurrent transient measurements.</p><p>The ionic liquids were successfully used as solar cell electrolytes, especially those originating from the diethyl and dibutyl-alkylsulphonium iodides. The highest overall conversion efficiency of almost 4 % was achieved by a dye-sensitized, nanocrystalline solar cell using (Bu<sub>2</sub>MeS)I:I<sub>2</sub> (100:1) as electrolyte (Air Mass 1.5 spectrum at 100 W m<sup>-2</sup>), quite compatible with the standard efficiencies provided by organic solvent-containing cells. Several solar cells with iodine-doped metal-iodidebased electrolytes reached stable efficiencies over 2 %. The (Bu<sub>2</sub>MeS)I:I<sub>2</sub>-containing cells showed better long-term stabilities than the organic solvent-based cells, and provided the fastest electron transports as well as the highest charge accumulation.</p><p>Several polypyridyl-ruthenium complexes were tested as solar cell sensitizers. No general improvements could be observed according to the addition of amphiphilic co-adsorbents to the dyes or nanopartices of titanium dioxide to the electrolytes. For ionic liquid-containing solar cells, a saturation phenomena in the short-circuit current densities emerged at increased light intensities, probably due to inherent material transport limitation within the systems.</p><p>Some iodoargentates and -cuprates were structurally characterized, consisting of monomeric or polymeric entities with anionic networks or layers. A system of metal iodide crownether complexes were employed and tested as electrolytes in photoelectrochemical solar cells, though with poorer results. Also, the crystal structure of a copper-iodide-(12-crown-4) complex has been characterized</p>
243

Solvated trivalent metal ions in solution : a coordination chemistry study /

Näslund, Jan. January 2000 (has links)
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2000. / Thesis based on five papers, which are included. Includes bibliographical references.
244

Principles of chemical reactivity on the Diels-Alder reaction in ionic liquids and Lewis acid large-scale computations

Acevedo, Orlando. January 2003 (has links)
Thesis (Ph. D.)--Duquesne University, 2003. / Title from document title page. Abstract included in electronic submission form. Includes bibliographical references.
245

The morphology and coulombic efficiency of lithium metal anodes

Goodman, Johanna Karolina Stark 08 June 2015 (has links)
Since their commercialization in 1990, the electrodes of the lithium-ion battery have remained fundamentally the same. While energy density improvements have come from reducing the cell packaging, higher capacity electrodes are needed to continue this trend. A lithium metal anode, where the negative electrode half reaction is the plating and stripping of metallic lithium, is explored as an alternative to current graphite anodes. The specific capacity of the lithium metal anode is over ten times that of the graphite anode, making it a serious candidate to further improve the energy density of lithium batteries. Electrodeposited lithium metal forms dendrites, sharp needles that can grow across the separator and short circuit the battery. Thus, a chief goal is to alter lithium’s plating morphology. This was achieved in two separate ionic liquid electrolytes by co-depositing lithium with sodium. The co-deposited sodium is thought to block dendritic sites, leading to a granular deposit. A nucleation study confirmed that metal deposits from the ionic liquid electrolyte containing sodium, prevented dendritic growth from nucleation on, and not after dendrites had already grown. A model based on the geometry of the nuclei was used to gain insight into the effect of the solid electrolyte interface (SEI) that forms on freshly deposited lithium metal. In addition to sodium, the effect of alkaline earth metals on the lithium deposit morphology was also explored. While these metals did not deposit from the ionic liquid electrolyte, their addition also resulted in granular, dendrite free, deposits. The alkaline earth additives generally increased the overpotential for nucleating on the substrate and lowered the current density achievable. Strontium and barium showed the least of these negative effects while still providing a dendrite free deposit. A second hurdle for lithium metal anodes is the instability between the electrolyte and lithium metal. A protective SEI layer that prevents undesired side reactions is difficult to form because of the large volume change associated with cycling. Formation of a better SEI on lithium metal was attempted through the addition vinylene carbonate, which greatly improved the coulombic efficiency of lithium metal plating and stripping. The effect of gases, such as oxygen, nitrogen and carbon dioxide, on the SEI layer was also investigated. It was found that the presence of nitrogen and oxygen improved the coulombic efficiency by facilitating a thinner SEI layer. This work presents attempts at improving the lithium metal anode both by increasing the coulombic efficiency of the redox process and by eliminating dendrite growth. The coulombic efficiency was improved through the bubbling of gases and addition of organic additives but work remains to increase this value further. Dendritic growth, which poses a safety hazard, was completely eliminated by two methods: 1) co-deposition and 2) adsorption of a foreign metal. Both methods could potentially be applied to different electrolytes, making them promising methods for preventing dendritic growth in future lithium metal anodes.
246

フルオロハイドロジェネートイオン液体を用いた無加湿燃料電池に関する研究 / A study on nonhumidified fuel cells using fluorohydrogenate ionic liquids

KIATKITTIKUL, PISIT 23 March 2015 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第19090号 / エネ博第314号 / 新制||エネ||64 / 32041 / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 萩原 理加, 教授 佐川 尚, 教授 野平 俊之 / 学位規則第4条第1項該当
247

THE EFFECT OF HYDROSTATIC PRESSURE ON THE IONIC CONDUCTIVITY OF SILVER-CHLORIDE

Abey, Albert E., 1935- January 1964 (has links)
No description available.
248

STRUCTURE AND TUNING PATTERN IN THE IONIC DOUBLE CLATHRATE HYDRATES

Shin, Kyuchul, Cha, Jong-Ho, Choi, Sukjeong, Lee, Huen 07 1900 (has links)
A number of notable studies on pure ionic clathrate hydrates have utilized their unique ionic characteristics for electric applications, including their use as an electrolyte for nickel-metal hydride batteries. Although quaternary ammonium salt hydrates have recently been applied to gas separation and storage areas with the expectation of the small co-guest occupancy in empty cages, most of the researches have been oriented to macroscopic approaches based on hydrate phase equilibria and many other process variables. On the other hand, spectroscopic analyses for identifying the structure transition of ionic clathrate hydrates together with a comprehensive consideration of their complex phase patterns have not yet been reported in spite of their importance to the energy and environmental fields. Accordingly, in this study, we present the report of an extraordinary structural transition accompanying the occurrence of more than two coexisting clathrate hydrate phases and channel-induced tuning pattern in ionic double hydrate systems. In particular, the tuning observation uniquely occurring in the ionic clathrate hydrates is quite surprising, even though the tuning behavior is more commonly observed in the non-ionic hydrate systems. The remarkable feature of this work is that the icy ionic hydrate materials can be effectively used in energy devices. Moreover, the microscopic analyses of ionic clathrate hydrates for identifying the physicochemical characteristics are expected to provide new insights into a variety of inclusion chemistry fields.
249

Materials Engineering for Stable and Efficient PbS Colloidal Quantum Dot Photovoltaics

Tang, Jiang 17 February 2011 (has links)
Environmental and economic factors demand radical advances in solar cell technologies. Organic and polymer photovoltaics emerged in the 1990's that have led to low cost per unit area, enabled in significant part by the convenient manufacturing of roll-to-roll-processible solution-cast semiconductors. Colloidal quantum dot solar cells dramatically increase the potential for solar conversion efficiency relative to organics by enabling optimal matching of a photovoltaic device's bandgap to the sun's spectrum. Infrared-absorbing colloidal quantum dot solar cells were first reported in 2005. At the outset of this study in 2007, they had been advanced to the point of achieving 1.8% solar power conversion efficiency. These devices degraded completely within a few hours’ air exposure. The origin of the extremely poor device stability was unknown and unstudied. The efficiency of these devices was speculated to be limited by poor carrier transport and passivation within the quantum dot solid, and by the limitations of the Schottky device architecture. This study sought to tackle three principal challenges facing colloidal quantum dot photovoltaics: stability; understanding; and performance. In the first part of this work, we report the first air-stable infrared colloidal quantum dot photovoltaics. Our devices have a solar power conversion efficiency of 2.1%. These devices, unencapsulated and operating in an air atmosphere, retain 90% of their original performance following 3 days’ continuous solar harvesting. The remarkable improvement in device stability originated from two new insights. First, we showed that inserting a thin LiF layer between PbS film and Al electrode blocks detrimental interfacial reactions. Second, we proposed and validated a model that explains why quantum dots having cation-rich surfaces afford dramatically improved air stability within the quantum dot solid. The success of the cation-enrichment strategy led us to a new concept: what if - rather than rely on organic ligands, as all prior quantum dot photovoltaics work had done - one could instead terminate the surface of quantum dots exclusively using inorganic materials? We termed our new materials strategy ionic passivation. The goal of the approach was to bring our nanoparticles into the closest possible contact while still maintaining quantum confinement; and at the same time achieving a maximum of passivation of the nanoparticles' surfaces. We showcase our ionic passivation strategy by building a photovoltaic device that achieves 5.8% solar power conversion efficiency. This is the highest-ever solar power conversion efficiency reported in a colloidal quantum dot device. More generally, our ionic passivation strategy breaks the past tradeoff between transport and passivation in quantum dot solids. The advance is relevant to electroluminescent and photodetection devices as well as to the record-performing photovoltaic devices reported herein.
250

Studies of molecular cluster ions

Jarvis, Vern Marshall 08 1900 (has links)
No description available.

Page generated in 0.0165 seconds