• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 582
  • 350
  • 189
  • 67
  • 33
  • 17
  • 16
  • 10
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1544
  • 417
  • 323
  • 204
  • 179
  • 156
  • 154
  • 150
  • 120
  • 119
  • 115
  • 107
  • 105
  • 103
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Líquidos iônicos eletropolimerizáveis / Electropolymerizable ionic liquids

Fernando Reinoldo Scremin 18 October 2013 (has links)
Líquidos Iônicos eletropolimerizáveis são caracterizados como líquidos iônicos que possuem um grupo eletropolimerizável ligado ao cátion ou ânion, a partir da eletropolimerização destes líquidos iônicos ocorre a imobilização dos íons em uma estrutura polimérica. Neste trabalho é apresentado a síntese de um líquido iônico eletropolimerizável onde anilina foi introduzida como grupo eletropolimerizante no cátion metil-imidazólio. Várias metodologias foram testadas para a eletropolimerização deste líquido iônico, envolvendo a utilização de solventes orgânicos e líquidos iônicos como eletrólitos. A copolimerização com anilina mostrou-se eficiente para obtenção de filmes poliméricos com a presença do monômero sintetizado. A influência deste monômero presente no copolímero foi estudada em relação ao comportamento eletroquímico, demonstrando o aumento da eletroatividade do polímero em líquidos iônicos apróticos. Em relação à morfologia, observou-se que a presença do monômero produz filmes mais compactos diferentemente da polianilina que apresenta uma morfologia dendrítica. Os processos eletrocrômicos para o copolímero não sofrem defasagem em relação aos processos eletroquímicos como observados na polianilina. Os processos redox do material foram acompanhados por EQCM-D demonstrando que a compensação de carga ocorre a partir do fluxo de cátions. Assim a presença monômero sintetizado no copolímero afeta o comportamento da polianilina, assim como qualquer substituinte volumoso, porém o copolímero apresenta propriedades intrínsecas de líquidos iônicos, demonstrando a formação de um material multifuncional. / Electropolymerizable lonic liquids have groups that are susceptible to electropolymerization bounded either to the cationic or anionic structure. In such cases, the ionic species can be immobilized into a polymeric matrix. This work presents the synthesis of an electropolymerizable ionic liquid in which aniline was inserted as the eletrocpolymerizable group in methyl-imidazolium. Several methods were tested for the electropolymerization, involving the use of organic solvents or ionic liquids as electrolytes. The copolymerization with aniline units was effective to obtain polyrnenc films in the presence of the synthesized monomer. The influence of the monomer in the copolymer was studied with respect to the electrochemical behavior, showing the increasing of the polymer electroactivity in aprotic ionic liquid electrolyte. The presence of the monomer produces more compact films than polyaniline which presents a dendritic morphology. The spectroeletrochemical processes for the copolymer do not suffer lag in relation to electrochemical processes as observed in polyaniline. The redox processes were monitored by EQCM-D demonstrating that the charge compensation takes place from the flow of cations. The presence of the synthesized monomer in the copolymer affects the behavior of polyaniline, as well as any substituent in the aniline, however the copolymer shows intrinsic properties of ionic liquids, demonstrating the formation of a multifunctional material
222

A high-resolution study of the structure and conformational stability of Pyrococcus horikoshii acylphosphatase in ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate by NMR spectroscopy. / CUHK electronic theses & dissertations collection

January 2013 (has links)
近十年間,離子液體在生物催化和蛋白質化學方面的廣泛應用引起了鑒定蛋白質在離子液體中特性的研究興趣。本研究以古菌Pyrococcus horikoshii的酰基磷酸酶acylphosphatase (PhAcP) 和50% (v/v) 離子液體1-乙基-3-甲基咪唑四氟硼酸鹽 ([EMIM][BF₄]) 作為研究模型,首次利用多維核磁共振譜對蛋白質在離子液體中的結構和穩定性作高解析度的分析。我們首先通過蛋白質主鏈共振歸屬,得出PhAcP每個被歸屬的胺基酸在50% (v/v) [EMIM][BF₄] 中¹³C[superscript α]、¹³C[superscript β]、¹³CO、¹⁵N、H[superscript N]和H[superscript α]原子的化學位移。¹³C的化學位移相對無序纏捲狀態的¹³C化學位移的偏差分析 (¹³C secondary shift),以及二級結構之間的nuclear Overhauser effect (NOE) 連接顯示PhAcP在50% (v/v) [EMIM][BF₄] 中的二級結構與PhAcP的自然結構大致相同,其三級結構亦無顯著變化。此外,我們以二維的¹H-¹⁵N HSQC實驗觀察在318K、328K和338K這三個溫度下的硫氰酸胍 (GdnSCN) 誘導蛋白質變性,發現同一溫度下無論50% (v/v) [EMIM][BF₄]是否存在,PhAcP的變性曲線都互相重疊,得到的 [GdnSCN]₁[subscript /]₂值也相同,由此可推斷50% (v/v) [EMIM][BF₄] 對PhAcP的穩定性沒有影響。 / The extensive application of ionic liquid in biocatalysis and protein chemistry in the past decade arouses interest in the characterization of protein behavior in ionic liquid. This study demonstrates the use of multi-dimensional nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and conformational stability of protein in ionic liquid at a high resolution for the first time, with Pyrococcus horikoshii acylphosphatase (PhAcP) and 50% (v/v) 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF₄]) as a study model. The backbone amide resonances of PhAcP in 50% (v/v) [EMIM][BF₄] were assigned in order to obtain the chemical shifts of ¹³C[superscript α], ¹³C[superscript β], ¹³CO, ¹⁵N, HN and H[superscript α] of each assigned residue. The estimation of secondary structure by the ¹³C secondary shift analysis and the nuclear Overhauser effect (NOE) connectivities observed within secondary structures together suggest that PhAcP has secondary structures arranged in native-like topology and there is no major alteration in the tertiary structure in 50% (v/v) [EMIM][BF₄]. Guanidine thiocyanate (GdnSCN)-induced denaturation was performed at 318K, 328K and 338K and monitored by 2D ¹H-¹⁵N HSQC experiments to study the conformational stability of PhAcP in 50% (v/v) [EMIM][BF₄]. The overlapping denaturation curves and consistent [GdnSCN]₁[subscript /]₂ values obtained at each temperature indicate no observable trend of stability alteration. / Detailed summary in vernacular field only. / Lee, Tsz Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 57-63). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese. / Abstract --- p.i / 摘要 --- p.ii / Acknowledgements --- p.iii / Contents --- p.iv / Abbreviations --- p.vii / List of Figures --- p.viii / List of Tables --- p.ix / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Introduction to ionic liquid --- p.1 / Chapter 1.1.1 --- Ionic liquid as reaction medium, co-solvent and additive in biocatalysis and protein chemistry --- p.1 / Chapter 1.1.2 --- The impact of ionic liquid on protein structure and stability is poorly understood --- p.3 / Chapter 1.2 --- PhAcP in [EMIM][BF₄] as a model to study the structure and stability of protein in ionic liquid by NMR spectroscopy --- p.6 / Chapter 1.2.1 --- The application of [EMIM][BF₄] with protein --- p.6 / Chapter 1.2.2 --- The background of PhAcP --- p.9 / Chapter 1.2.3 --- Overview of the study --- p.10 / Chapter Chapter 2 --- Materials and Methods --- p.12 / Chapter 2.1 --- Expression and purification of PhAcP --- p.12 / Chapter 2.1.1 --- Expression of PhAcP in Escherichia coli system --- p.12 / Chapter 2.1.2 --- Purification of PhAcP --- p.14 / Chapter 2.2 --- Solubility determination --- p.15 / Chapter 2.3 --- NMR experiments --- p.17 / Chapter 2.3.1 --- General procedures and sample preparation --- p.17 / Chapter 2.3.2 --- ¹H-¹⁵N HSQC spectra in various concentrations of [EMIM][BF₄] --- p.18 / Chapter 2.3.3 --- Structural characterization --- p.18 / Chapter 2.3.4 --- Stability characterization --- p.19 / Chapter Chapter 3 --- Results --- p.21 / Chapter 3.1 --- Can the solubility of PhAcP in [EMIM][BF₄] reach the millimolar range required for NMR study? --- p.21 / Chapter 3.2 --- Determination of the [EMIM][BF₄] concentration for a feasible NMR study --- p.23 / Chapter 3.3 --- Backbone resonance assignment of PhAcP in 50% (v/v) [EMIM][BF₄] --- p.26 / Chapter 3.4 --- Structural characterization of PhAcP in 50% (v/v) [EMIM][BF₄] --- p.29 / Chapter 3.4.1 --- Secondary structure estimation by ¹³C secondary shifts --- p.29 / Chapter 3.4.2 --- NOE connectivities within secondary structures --- p.35 / Chapter 3.5 --- Characterization of the conformational stability of PhAcP in 50% (v/v) [EMIM][BF₄] by guanidine thiocyanate-induced denaturation --- p.40 / Chapter Chapter 4 --- Discussion --- p.46 / Chapter 4.1 --- The structure of PhAcP in 50% (v/v) [EMIM][BF₄] resembles the native conformation --- p.46 / Chapter 4.2 --- The conformational stability of PhAcP has no observable change in 50% (v/v) [EMIM][BF₄] --- p.47 / Chapter 4.3 --- Insight into the application of enzyme in ionic liquid --- p.48 / Chapter 4.4 --- Limitation of the study --- p.49 / Chapter 4.5 --- Insight into future studies --- p.50 / Chapter Chapter 5 --- Conclusions --- p.51 / Appendix --- p.53 / References --- p.57
223

Diferentes rotas para promoção de mesoporosidade em zeólita Y para aplicação em catálise

Melo, James Henrique dos Santos de January 2017 (has links)
As zeólitas são amplamente utilizadas pela indústria em diferentes processos. Nos processos relacionados à conversão térmica do carvão, as zeólitas encontram aplicação, por exemplo, como suporte de catalisadores para a Síntese de Fischer-Tropsch, ou mesmo como adsorventes de efluentes líquidos ou de gases poluentes. No entanto, a microporosidade da zeólita limita a difusão dos produtos e dos reagentes ocasionando um transporte de massa lento e um longo tempo de residência, aumentando a possibilidade de reações secundárias, formação de coque e desativação do catalisador. Uma das maneiras de superar essas limitações é a introdução de um sistema secundário de poros, através da reestruturação da rede cristalina com modeladores de estruturas ou ataques químicos básicos e ácidos nas zeólitas de modo a formar materiais hierárquicos ou mesoporosos. Neste trabalho, foram investigadas três rotas para promover a mesoporosidade em zeólitas do tipo Y. Primeiramente foi realizada a síntese da zeólita hierárquica através da modificação com líquidos iônicos. O segundo método empregado foi o processo de dessilicação, utilizando hidróxido de sódio como base e, por último, a desaluminação com ácido oxálico. As zeólitas mesoporosas foram caracterizadas através de análises de área específica (BET), distribuição de tamanho de poros (BJH), difração de raios X (DRX) e redução à temperatura programada (TPR-H2). Dentre os métodos adotados, os resultados para DRX e BET mostraram que o tratamento de dessilicação destruiu a cristalinidade da zeólita, acarretando no abandono dessa rota de investigação. A síntese com líquido iônico se mostrou eficiente para a formação de mesoporos e, conforme a distribuição de tamanho de poros, seu sistema apresentou-se ordenado de maneira hierarquizada. A desaluminação não danificou a estrutura da zeólita, porém foi obtido um aumento pouco expressivo em seu número de mesoporos. A reação de esterificação foi utilizada, como modelo, para avaliar o efeito dos mesoporos sobre a atividade catalítica da reação. A reação de esterificação ocorreu a 70°C por 1 h, utilizando ácido acético e álcoois com diferentes tamanhos de moléculas. Em comparação à zeólita de partida (CBV720 - Zeolyst), a criação da mesoporosidade na zeólita através dos líquidos iônicos resultou em um aumentou na conversão de ácido acético para os álcoois etílico (em 17,65%), isopropílico (em 8,42%) e isobutílico (em 2%). Para a zeólita mesoporosa sintetizada por desaluminação, houve um acréscimo de 10,93% e 2,11% na conversão para os álcoois etílico e isopropílico, respectivamente. Os resultados mostraram que a presença de mesoporosidade influenciou positivamente o desempenho das zeólitas Y na reação modelo de esterificação, mostrando-se um excelente mecanismo a ser aplicado para facilitar o transporte de massa nos poros da zeólita, especialmente para a síntese feita com o emprego de líquidos iônicos. / Zeolites are widely used by industry in different processes. In processes related to the thermal conversion of coal, the zeolites find application, for example, as catalyst support for the Fischer-Tropsch Synthesis, or even as adsorbents of liquid effluents or pollutant gases. However, the small pore diameter of the zeolite limits the diffusion of the products and the reactants causing slow mass transport and a long residence time that increase the possibility of secondary reactions, coke formation and catalyst deactivation. One of the ways to overcome these limitations is the introduction of a secondary pore system by restructuring the crystal lattice with structural modellers or basic chemical and acidic attacks on zeolites to form hierarchical or mesoporous materials. In this work, three routes were investigated to promote mesoporosity in Y type zeolites. First, the hierarchical zeolite was synthesized through the modification with ionic liquids. The second method used was the desilication process, using sodium hydroxide as the base and, finally, the desalumination method with oxalic acid. The mesoporous zeolites were characterized by specific surface area analysis (BET), pore size distribution (BJH), X-ray diffraction (XRD) and temperature programmed reduction (TPR-H2). Among the methods adopted, the results for XRD and BET showed that the desilication treatment destroyed the crystallinity of the zeolite, leading to the abandonment of this research route. The synthesis with ionic liquid was efficient for the formation of mesopores and, according to the pore size distribution, its system was hierarchically ordered. The desalumination did not damage the zeolite structure, but a small increase in its number of mesopores was noted. The esterification reaction was used to evaluate the effect of mesopores on the catalytic activityof the reaction. The esterification reaction occurred at 70°C for 1 h using acetic acid and alcohols with different sizes of molecules. Compared to the starting zeolite (CBV720 - Zeolyst), the creation of mesoporosity in the zeolite through the ionic liquids resulted in an increase in the conversion of acetic acid for the reaction conducted with ethyl (17.65%), isopropyl (8.42%) and isobutyl alcohols (2%). For the mesoporous zeolite synthesized by desalumination, there was an increase of 10.93% and 2.11% in the conversion to the ethyl and isopropyl alcohols, respectively. The results showed that the presence of mesoporosity positively influenced the performance of the zeolites Y in the esterification model reaction, showing an excellent mechanism to be applied to facilitate the mass transport in the zeolite pores, especially for the synthesis made with the use of ionic liquids.
224

Ionic liquid-based nanofluids for thermal application

Oster, Kamil January 2018 (has links)
Heat transfer fluids are materials responsible for heat distribution, transfer and storage. Their significance is undeniable - many technological processes cannot be carried out without using heat transfer materials (for example due to overheating). These are usually mixtures of many compounds, for example glycols, silicones or water. Today's technologies constantly require more efficient, environmentally- and economically-friendly solutions for heat transfer applications. It is necessary to know the full physicochemical characteristics to design a new heat transfer fluid (mainly density, heat capacity, viscosity and thermal conductivity). Nanofluids (mixture of a basefluid and nanoparticles) were proposed as a solution for many industrial issues due to their enhanced thermophysical properties (i.e. thermal conductivity) than pure liquids. Moreover, these enhancements exhibit unusual features which make this group of materials interesting from molecular and industrial point of view. Ionic liquids, task specific materials with tuneable properties were repeatedly recommended as heat transfer fluids due to their specific properties (mainly low vapour pressure, wide liquidus range, or non-flammability) caused by the ionic structure. A very interesting material can be obtained by mixing ionic liquids and nanoparticles where specific properties of ionic liquids are preserved, and thermophysical properties are enhanced due to nanoparticles dispersion. In this work, we investigated ionic liquid - based nanofluids from the experimental and theoretical point of view, including imidazolium-, pyrrolidinium- and phosphonium-based ionic liquids with several different anions, and multiwalled carbon nanotubes, graphite, boron nitride and mesoporous carbon as nanoparticles, and also in mixtures with water. As a final result, we assessed the molecular recognition of the thermophysical properties enhancements in ionanofluids, developed the predictive models for physical properties, compared all investigated systems to commercial heat transfer fluids. The project was supported by King Faisal University (Saudi Arabia) through a research fund from the International Cooperation and Knowledge Exchange Administration department at KFU. Cytec are thanked for the generous donation of the trihexyl(tetradecyl)phosphonium chloride sample.
225

Corrosion and Passivation of Mg-Al and Ni-Cr Alloys

January 2018 (has links)
abstract: In this dissertation, micro-galvanic corrosion effects and passivation behavior of single-phase binary alloys have been studied in order to formulate new insights towards the development of “stainless-like” lightweight alloys. As a lightweight material of interest, Mg-xAl alloys were studied using aqueous free corrosion, atmospheric corrosion, dissolution rate kinetics, and ionic liquid dissolution. Polarization and “accelerated” free corrosion studies in aqueous chloride were used to characterize the corrosion behavior and morphology of alloys. Atmospheric corrosion experiments revealed surface roughness and pH evolution behavior in aqueous environment. Dissolution in absence of water using choline-chloride:urea ionic liquid allowed for a simpler dissolution mechanism to be observed, providing additional insights regarding surface mobility of Al. These results were compared with commercial alloy (AZ31B, AM60, and AZ91D) behavior to better elucidate effects associated with secondary phases and intermetallic particles often present in Mg alloys. Aqueous free corrosion, “accelerated” free corrosion and ionic liquid dissolution studies have confirmed Al surface enrichment in a variety of morphologies, including Al-rich platelet and Al nanowire formation. This behavior is attributed to the preferential dissolution of Al as the more “noble” element in the matrix. Inductively-coupled mass spectroscopy was used to measure first-order rate reaction constants for elemental Mg and Al dissolution in aqueous chloride environment to be kMg= 9.419 x 10-6 and kAl = 2.103 x 10-6 for future implementation in kinetic Monte Carlo simulations. To better understand how “stainless-like” passivation may be achieved, Ni-xCr alloys were studied using polarization and potential pulse experiments. The passivation potential, critical current density, and passivation current density were found to decay with increasing Cr composition. The measured average number of monolayers dissolved during passivation was found to be in good agreement with percolation theory, with a fitted 3-D percolation threshold of p_c^3D=0.118 compared with the theoretical value of 0.137. Using these results, possible approaches towards achieving passivation in other systems, including Mg-Al, are discussed. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2018
226

\"Eletrólitos sólidos poliméricos a base de amidos de mandioca: nativo, acetilado e oxidado - acetilado\" / \"Solid polimeric electrolytes from cassava starches native and modified: acetilated and oxidated-acetilated\"

Raphael, Ellen 26 September 2006 (has links)
Esta dissertação apresenta a caracterização e o preparo de filmes a partir de amido de mandioca nativo e modificado industrialmente (amido acetilado e amido oxidado - acetilado), através da plastificação com glicerol , sorbitol ou etileno glicol. Estes filmes foram preparados adicionando-se um sal (perclorato de lítio) com o propósito de serem utilizados como eletrólitos sólidos poliméricos (ESP), os quais apresentam grande potencial de aplicação em dispositivos eletrocrômicos, sensores e baterias, por isso os ESPs devem ser: transparentes, apresentar boa aderência e maleabilidade além de boa condutividade iônica. As modificações conferidas ao amido foram estudadas empregando-se técnicas caracterização por espectroscopia no infravermelho, RMN e análise elementar. A distribuição de massa molecular das amostras de amido nativo e dos amidos modificados também foi estudada através da técnica de cromatografia de permeação em gel (GPC). Os filmes foram preparados utilizando-se diferentes proporções de plastificante e de sal e em seguida com intuito de efetuar as caracterizações físico-químicas estas amostras foram submetidas à análises de espectroscopia de impedância eletroquímica, difração de Raios-X, Microscopia Eletrônica de Varredura (MEV), análises espectrofotométricas de UV-visível, além das análises térmicas (TG e DSC). / This dissertation presents the preparation and characterization of films obtained from native and industrially modified (acetilate and oxidate-acetilate), cassava starches, through the plasticization with glycerol, sorbitol or ethylene glycol. These films are prepared adding a salt (lithium perchlorate) so that they can be used as solid polymeric electrolytes (ESP), which present great application potential in electrochromic devices, sensors and batteries, therefore the films obtained must be transparent, present good adherence and flexibility besides good ionic conductivity. The modifications of the starch were studied using techniques of characterization by infrared espectroscopy, RMN and elementary analysis. The distribution of the molecular mass of the samples of native and modified starches was also studied by means of gel permeation chromatography (GPC). The films were prepared using different proportions of plasticizers and salt. For the physical-chemical characterization of the samples, they were subjected to analyses of electrochemical impedance spectroscopy, X-Ray diffraction, Scanning Electronic Microscopy (SEM), Uv-visible spectroscopy, besides thermal analyses (TG and DSC).
227

The electrochemical double layer in ionic liquids

Lucio, Anthony Joseph 01 May 2018 (has links)
The electrochemical double layer (EDL) at the solid–liquid interface is the near surface region where important electrochemical processes (e.g., electrodeposition, corrosion, and heterogeneous catalysis) take place. Subtle changes in the electrode surface material/topography and the nature of the fluid medium can drastically alter interactions between liquid molecules and the solid surface. A better understanding of this interfacial region can help advance numerous applied fields, such as battery technologies, solar cells, double layer capacitors, and carbon dioxide capture/conversion. Ionic liquids (IL) are an emerging class of solvents that could replace traditional aqueous/non-aqueous solvents due to their advantageous physiochemical properties (e.g., wide solvent window, high thermal stability, and excellent solvating power). However, our understanding of the near-surface structure of ILs in the EDL is still being developed. This thesis focuses on the fundamental electrochemical behavior of ILs to help understand its interfacial behavior in three main areas: 1) the nature of capacitance-potential relationships in neat ILs, 2) the role of ‘user-defined’ experimental variables on capacitive electrochemical measurements, and 3) the impact of IL + water mixtures on experimental data. The general shape of capacitance-potential curves can suggest at the broad architecture of the EDL region. Fundamental capacitive studies of the IL EDL show a wide range of results, even for similar electrochemical systems. Theoretical predictions suggest the capacitance-potential curve should exhibit bell- or camel-shaped curvature depending on the nature of the IL. Experimental observations have demonstrated several functional shapes such as U-shaped, bell-shaped, camel-shaped, and relatively featureless responses. Much of the work in this thesis starkly contrasts theoretical expectations by demonstrating capacitive behavior that is analogous to high temperature molten salts and dilute aqueous electrolytes with metallic and non-metallic electrode materials. However, our systematic studies of a model IL electrochemical system reveal that there are several ‘user-defined’ experimental variables (i.e. potential scan direction, data acquisition protocol, experimental technique, and potential range probed) which in some instances can significantly impact the resulting capacitance curvature. Some of these variables are often overlooked in the literature and our efforts are aimed at uniting the scientific community in this area to help better compare and understand results. An additional experimental variable of importance is the sorption of water into ILs, which is nearly impossible to prevent due to their hygroscopic nature. The presence of water is known to have a significant effect on the resulting mixtures’ bulk and interfacial properties. While the interaction between ILs and water can significantly vary depending on the nature of the IL, this thesis demonstrates that within small quantities (e.g., < 5000 ppm) of sorbed water there are only minor changes in spectroscopic and electrochemical responses. Collectively, the work outlined in this thesis helps the scientific community better understand electrochemical measurements in IL solvents by examining key analytical variables associated with capacitive measurements. The fundamental electrochemical studies described in this thesis demonstrate that the solid-liquid interface for IL solvents is response to even subtle changes in surface chemistries. These governing interfacial properties have ramifications in myriad applications from energy storage to lubrication.
228

The study of ionic liquid behavior at solid-liquid interfaces

Anaredy, Radhika Sudhakar 01 December 2018 (has links)
Ionic liquids are organic salts with room temperature melting points. Their unique physicochemical properties make them popular choices in the fields of tribology, energy storage and production, and extractions. Previous studies show that IL’s interfacial volume, extending some nanometers from an adjacent surface, is characterized by the self-assembly of IL molecules into ordered structures. This ordering imparts unique properties which often govern the properties of ILs and affect their application in the aforementioned areas. This thesis describes research conducted to understand the behaviors and interactions of ILs at interfaces, along with investigations of bulk IL structures and transitions in the presence of water. The findings reported will help the scientific community by giving insight into the physical and chemical processes surrounding IL behavior, allowing ILs’ physicochemical properties to be more accurately tailored, via judicious synthesis, to a desired application. Major findings of this work show that the ordered interfacial region may extend up to two orders of magnitude further from the interface than previously thought. Specifically, this thesis shows several examples of reversible IL self-assembly into long-range ordered films that extend up to ~ 2 μm from a surface. This is approximately twelve times the thickness of interfacial region previously reported. Temperature controlled studies on the bulk structure of an IL at its phase transition temperatures aid in understanding the structural arrangement of molecules in the bulk fluid as a function of temperature. Spectroscopic analyses of these bulk studies and the above interfacial systems showed no similarities, indicating that the self-assembled interfacial structures are, in fact, unique. Being hygroscopic in nature, water is the most common impurity found in ILs. Water can affect IL intermolecular forces and the resulting structures in bulk fluids as well as at the interface. One of the chapter of this thesis describes these interactions, and the variably hydrated IL structures for two classes of ILs via spectroscopic and electrochemical techniques. The outcomes of this thesis will aid the community in understanding interfacial and bulk structures of ILs, as well as influences of temperature and water on these structures. The description of extended IL structures provides valuable insights into new design principles for truly task-specific ILs.
229

Titration Microcalorimetry Study: Interaction of Drug and Ionic Microgel System

Tian, Y., Tam, Michael K. C., Hatton, T. Alan, Bromberg, Lev 01 1900 (has links)
Doxorubicin (DOX) and Pluronic-PAA interaction was investigated using isothermal titration calorimetry (ITC). DOX/polymer interaction is governed primarily by electrostatic interaction. The uptake of DOX results in the formation of insoluble polymer/DOX complex. Addition of salt weakens the interaction of drug and polymer by charge shielding effect between positive ionized amino group on DOX and oppositely charged polymer chains. However high drug-loading capacity in high salt condition implied that self-association property of DOX also play a role in the drug loading process. / Singapore-MIT Alliance (SMA)
230

Liquid Redox Electrolytes for Dye-Sensitized Solar Cells

Yu, Ze January 2012 (has links)
This thesis focuses on liquid redox electrolytes in dye-sensitized solar cells (DSCs). A liquid redox electrolyte, as one of the key constituents in DSCs, typically consists of a redox mediator, additives and a solvent. This thesis work concerns all these three aspects of liquid electrolytes, aiming through fundamental insights to enhance the photovoltaic performances of liquid DSCs. Initial attention has been paid to the iodine concentration effects in ionic liquid (IL)-based electrolytes. It has been revealed that the higher iodine concentration required in IL-based electrolytes can be attributed to both triiodide mobility associated with the high viscosity of the IL, and chemical availability of triiodide. The concept of incompletely solvated ionic liquids (ISILs) has been introduced as a new type of electrolyte solvent for DSCs. It has been found that the photovoltaic performance of ISIL-based electrolytes can even rival that of organic solvent-based electrolytes. And most strikingly, ISIL-based electrolytes provide highly stable DSC devices under light-soaking conditions, as a result of the substantially lower vapor pressure of the ISIL system. A significant synergistic effect has been observed when both guanidinium thiocyanate and N-methylbenzimidazole are employed together in an IL-based electrolyte, exhibiting an optimal overall conversion efficiency. Tetrathiafulvalene (TTF) has been investigated as an organic iodine-free redox couple in electrolytes for DSCs. An unexpected worse performance has been observed for the TTF system, albeit it possesses a particularly attractive positive redox potential. An organic, iodine-free thiolate/disulfide system has also been adopted as a redox couple in electrolytes for organic DSCs. An impressive efficiency of 6.0% has successfully been achieved by using this thiolate/disulfide redox couple in combination with a poly (3, 4-ethylenedioxythiophene) (PEDOT) counter electrode material under full sunlight illumination (AM 1.5G, 100 mW/cm2). Such high efficiency can even rival that of its counterpart DSC using a state-of-the-art iodine-based electrolyte in the systems studied.The cation effects of lithium, sodium and guanidinium ions in liquid electrolytes for DSCs have been scrutinized. The selection of the type of cations has been found to exert quite different impacts on the conduction band edge (CB) of the TiO2 and also on the electron recombination kinetics, therefore resulting in different photovoltaic behavior. / QC 20120124

Page generated in 0.043 seconds