11 |
X Marks the Spot: Nexus of Filaments, Cores, and Outflows in a Young Star-forming RegionImara, Nia, Lada, Charles, Lewis, John, Bieging, John H., Kong, Shuo, Lombardi, Marco, Alves, Joao 15 May 2017 (has links)
We present a multiwavelength investigation of a region of a nearby giant molecular cloud that is distinguished by a minimal level of star formation activity. With our new (CO)-C-12(J = 2-1) and (CO)-C-13(J = 2-1) observations of a remote region within the middle of the California molecular cloud, we aim to investigate the relationship between filaments, cores, and a molecular outflow in a relatively pristine environment. An extinction map of the region from Herschel Space Observatory observations reveals the presence of two 2 pc long filaments radiating from a highextinction clump. Using the (CO)-C-13 observations, we show that the filaments have coherent velocity gradients and that their mass-per-unit-lengths may exceed the critical value above which filaments are gravitationally unstable. The region exhibits structure with eight cores, at least one of which is a starless, prestellar core. We identify a low-velocity, low-mass molecular outflow that may be driven by a flat spectrum protostar. The outflow does not appear to be responsible for driving the turbulence in the core with which it is associated, nor does it provide significant support against gravitational collapse.
|
12 |
High velocity clouds and the Milky Way HaloThom, Christopher, na. January 2006 (has links)
This thesis presents an exploration of stars and gas in the halo of our Galaxy. A sample
of 8321 field horizontal branch (FHB) stars was selected from the Hamburg/ESO Survey.
The stars make excellent tracers of the Milky Way halo, and we studied the kinematics
of a subset of the HES FHB stars, comparing their velocity dispersions to those predicted
by several models. Since these stars are intrinsically luminous, hot and numerous they
make ideal probes of the distances to high-velocity clouds (HVCs) - clouds of neutral
hydrogen gas whose distances are largely unknown and which do not fit simple models
of Galaxy rotation. A catalogue of stars which align with the HVCs was developed. High
resolution spectroscopy of 16 such HVC probes with the Magellan telescope has yielded
a remarkably tight distance constraint to complex WB. This is one of only a handful of
such distance limits so far established. Lower distance limits were set for several other
clouds. Finally, we have suggested that some of the HVCs may be associated with the
accretion onto the MilkyWay of the Sagittarius dwarf galaxy.
|
13 |
Modeling submillimetre polarization of molecular cloud cores using successive parametrized coordinate transformationsFranzmann, Erica 20 August 2014 (has links)
We present a novel new method for modelling magnetized molecular cloud cores using submillimetre linear polarization maps from thermal dust emission. Our PolCat modelling software builds a three-dimensional core model via the use of consecutive parametrized coordinate transformations, and produces simulated polarization maps to fit to observational datasets. We utilize the Ferret evolutionary optimizer to search the parameter space to simultaneously minimize chi-squared for the intensity and polarization position angle maps separately.
We have applied PolCat to multiple test problems and several datasets from the SCUPOL Legacy Catalogue. We find that PolCat is able to distinguish between maps of twisted and non-twisted field geometries and identify twist symmetry. Preliminary fits to several datasets show that the best potential field geometries to our sample cores contain field twists. Further research using a larger number of maps is required to determine if twisted fields are commonplace in cores.
|
14 |
THE ARIZONA RADIO OBSERVATORY CO MAPPING SURVEY OF GALACTIC MOLECULAR CLOUDS. V. THE SH2-235 CLOUD IN CO J = 2 − 1, 13 CO J = 2 − 1, AND CO J = 3 − 2Bieging, John H., Patel, Saahil, Peters, William L., Toth, L. Viktor, Marton, Gábor, Zahorecz, Sarolta 26 September 2016 (has links)
We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and (CO)-C-13 J = 2 - 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38 '' (FWHM), with an rms noise of 0.12K brightness temperature, for a velocity resolution of 0.34 km s(-1). With the same telescope, we also mapped the CO J = 3 - 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s(-1). The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and (CO)-C-13. J = 2 - 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc(2). region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H II regions, which may be triggering current star formation.
|
15 |
A Survey of Far Ultraviolet Spectroscopic Explorer and Hubble Space Telescope Sight Lines Through High-Velocity Cloud Complex CCollins, Joseph A., Shull, J. Michael, Giroux, Mark L. 01 March 2003 (has links)
Using archival Far Ultraviolet Spectroscopic Explorer (FUSE) and Hubble Space Telescope (HST) data, we have assembled a survey of eight sight lines through high-velocity cloud Complex C. Abundances of the observed ion species vary significantly for these sight lines, indicating that Complex C is not well characterized by a single metallicity. Reliable metallicities based on [O I/H I] range from 0.1 to 0.25 Z⊙. Metallicities based on [S II/H I] range from 0.1 to 0.6 Z⊙, but the trend of decreasing abundance with H I column density indicates that photoionization corrections may affect the conversion to [S/H]. We present models of the dependence of the ionization correction on H I column density; these ionization corrections are significant when converting ion abundances to elemental abundances for S, Si, and Fe. The measured abundances in this survey indicate that parts of the cloud have a higher metallicity than previously thought and that Complex C may represent a mixture of " Galactic fountain " gas with infalling low-metallicity gas. We find that [S/O] and [Si/O] have a solar ratio, suggesting little dust depletion. Further, the measured abundances suggest an overabundance of O, S, and Si relative to N and Fe. The enhancement of these α-elements suggests that the bulk of the metals in Complex C were produced by Type II supernovae and then removed from the starforming region, possibly via supernova-driven winds or tidal stripping, before the ISM could be enriched by N and Fe.
|
16 |
Metallicity and Ionization in High-Velocity Cloud Complex CCollins, Joseph A., Shull, J. Michael, Giroux, Mark L. 01 March 2007 (has links)
We analyze HST and FUSE ultraviolet spectroscopic data for 11 sight lines passing through the infalling high-velocity cloud (HVC) Complex C. These sight lines pass through regions with H I column densities in the range N H I = 1018.1 -1020.1 cm-2. From [OI/HI] abundances, we find that Complex C metallicities range from 0.09 to 0.29 Z⊙, with a column density weighted mean of 0.13 Z ⊙. Nitrogen (N I) is underabundant by factors of (0.01 -0.07)(N/H)⊙, significantly less than oxygen relative to solar abundances. This pattern suggests nucleosynthetic enrichment by Type II SNe, consistent with an origin in the Galactic fountain or infalling gas produced in winds from Local Group galaxies. The range of metallicity and its possible (2 σ) dependence on NH I could indicate some mixing of primordial material with enriched gas from the Milky Way, but the mixing mechanism is unclear. We also investigate the significant highly ionized component of Complex C, detected in C IV, Si IV, and O VI, but not in N V. High-ion column density ratios show little variance and are consistent with shock ionization or ionization at interfaces between Complex C and a hotter surrounding medium. Evidence for the former mechanism is seen in the Mrk 876 line profiles, where the offset in line centroids between low and high ions suggests a decelerating bow shock.
|
17 |
Highly Ionized High-Velocity Clouds: Hot Intergalactic Medium or Galactic Halo?Collins, Joseph A., Michael Shull, J., Giroux, Mark L. 10 April 2005 (has links)
We use spectroscopic data from the Hubble Space Telescope (HST) and Far Ultraviolet Spectroscopic Explorer (FUSE) to study the wide range of ionization states of the "highly ionized high-velocity clouds" (HVCs). Studied extensively in O VI absorption, these clouds are usually assumed to be infalling gas in the Galactic halo at distances less than 50 kpc. An alternative model attributes the O VI (and O VII X-ray absorption) to cosmological structures of low-density, shock-heated intergalactic gas, distributed over 1-3 Mpc surrounding the Milky Way. The latter interpretation is unlikely, owing to the enormous required mass of gas (4 × 1012 M⊙). Our detection, in 9 of 12 sight lines, of low-ionization stages (C II/III/IV; Si II/III/IV) at similar high velocities as O vi requires gas densities far above that (nH ≈ 5 × 10-6 cm-3) associated with the warm-hot intergalactic medium (WHIM). These HVCs are probably cooling, multiphase gas in the Galactic halo, bow shocks, and interfaces between clouds falling through a hot, rotating gaseous halo. The velocity segregation of these HVCs in Galactic coordinates is consistent with a pattern in which infalling clouds reflect the sense of Galactic rotation, with peculiar velocities superposed.
|
18 |
Highly Ionized High-Velocity Clouds Toward PKS 2155-304 and Markarian 509Collins, Joseph A., Shull, J. Michael, Giroux, Mark L. 10 April 2004 (has links)
To gain insight into four highly ionized high-velocity clouds (HVCs) discovered by Sembach et al., we have analyzed data from the Hubble Space Telescope (HST) and Far Ultraviolet Spectroscopic Explorer (FUSE) for the PKS 2155-304 and Mrk 509 sight lines. We measure strong absorption in O VI and column densities of multiple ionization stages of silicon (Si II, III, and IV) and carbon (C II, III, and IV). We interpret this ionization pattern as a multiphase medium that contains both collisionally ionized and photoionized gas. Toward PKS 2155-304, for HVCs at -140 and -270 km s-1, respectively, we measure logN(O VI) = 13.80 ± 0.03 and logN(O VI) = 13.56 ± 0.06; from Lyman series absorption, we find logN(H I) = 16.37 -0.14+0.22 and 15.23-0.22+0.38. The presence of high-velocity O VI spread over a broad (100 km s-1) profile, together with large amounts of low-ionization species, is difficult to reconcile with the low densities, ne ≈ 5 × 10-6 cm-3, in the collisional/photoionization models of Nicastro et al., although the HVCs show a similar relation in N(Si IV)/N(C IV) versus N(C II)/N(C IV) to that of high-z intergalactic clouds. Our results suggest that the high-velocity O VI in these absorbers does not necessarily trace the warm-hot intergalactic medium but instead may trace HVCs with low total hydrogen column density. We propose that the broad high-velocity O VI absorption arises from shock ionization, at bow shock interfaces produced from infalling clumps of gas with velocity shear. The similar ratios of high ions for HVC Complex C and these highly ionized HVCs suggest a common production mechanism in the Galactic halo.
|
19 |
The Nature of Super-Eddington Outflow around Black Holes / ブラックホール周りの超エディントン噴出流の特性Takeuchi, Shun 24 March 2014 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(理学) / 乙第12813号 / 論理博第1539号 / 新制||理||1577(附属図書館) / 31300 / (主査)教授 嶺重 慎, 准教授 前田 啓一, 教授 長田 哲也 / 学位規則第4条第2項該当 / Doctor of Science / Kyoto University / DFAM
|
20 |
Mass assembly in star formation via interstellar filamentsChen, Michael Chun-Yuan 28 January 2021 (has links)
Understanding how diffuse molecular clouds at large scales (~10 pc) assemble mass into dense, star-forming cores at small scales (~ 0.1 pc) is crucial to building a holistic theory of star formation. While recent observations suggest that filaments play an important role in the mass assembly of dense cores, detailed gas kinematics studies are still lacking. My dissertation presents three innovative techniques that enable us to study star-forming filaments' complex gas kinematics in unprecedented detail: multi-component spectral fit, multi-dimensional filament identification, and membership assignment of velocity-coherent structures. Through these techniques, I analyzed star-forming filaments in the Perseus Molecular Cloud and unveiled unexpectedly complex velocity structures at scales where filaments are well resolved, to as low as the 0.01 pc scale. Moreover, the correlations I discovered between the various filament properties further suggest a scenario in which thermally supercritical filaments grow continuously via accretion from their surroundings while simultaneously forming cores through fragmentation along their lengths. / Graduate / 2022-01-08
|
Page generated in 0.0205 seconds