21 |
Cloud-scale molecular gas properties in nearby merging galaxiesBrunetti, Nathan January 2022 (has links)
In this thesis we present cloud-scale ALMA observations of two local mergers, NGC 3256 and NGC 4038/9 (the "Antennae"), in CO J=2-1. Through a pixel-based analysis of NGC 3256 we measure molecular-gas properties and compare to nearby spiral galaxies from the PHANGS-ALMA survey. NGC 3256 exhibits high mass surface densities, velocity dispersions, peak brightness temperatures, virial parameters, and internal turbulent pressures. High surface densities are expected to accompany its high star-formation rate, and high brightness temperatures may indicate warmer gas, heated by the vigorous star formation. Large virial parameters and internal pressures imply the molecular gas is not bound by self-gravity, but we explore how material external to clouds could alter this. We argue the molecular gas in NGC 3256 is smoother than in nearby spiral galaxies down to 55 pc. We also perform a cloud analysis of our NGC 3256 observations, identifying 185 clouds, and find similar results to the pixel analysis. We calculate additional cloud properties including eccentricity, CO luminosity, CO-estimated mass, virial mass, size-linewidth coefficient, and free-fall time. Properties in NGC 3256 are extreme compared to clouds from PHANGS-ALMA, including slightly larger clouds and shorter free-fall times. Cloud eccentricities in NGC 3256 are similar to those in PHANGS-ALMA galaxies, possibly indicating similar average cloud dynamical states. The shape of the cloud mass function in NGC 3256 is similar to many PHANGS-ALMA galaxies. Finally, we analyse our NGC 4038/9 observations using the same pixel methods as used in NGC 3256. NGC 4038/9 also harbours extreme molecular-gas properties and potentially smoother emission compared to spiral galaxies, but not as extreme as NGC 3256. We find the most-massive spiral galaxies have central molecular-gas properties similar to the mergers. Virial parameters in NGC 4038/9 are similar to many spiral galaxies, making it quite different from NGC 3256, potentially due to their different merger stages. Comparison of the overlap region of NGC 4038/9 in CO (2-1) to CO (3-2) shows general agreement. / Thesis / Doctor of Philosophy (PhD)
|
22 |
A submillimetre study of nearby star formation using molecular line dataDrabek-Maunder, Emily Rae January 2013 (has links)
This thesis primarily uses submillimetre molecular line data from HARP, a heterodyne array on the James Clerk Maxwell Telescope (JCMT), to further investigate star formation in the Ophiuchus L1688 cloud. HARP was used to observe CO J = 3-2 isotopologues: 12CO, 13CO and C18O; and the dense gas tracer HCO+ J = 4-3. A method for calculating molecular line contamination in the SCUBA-2 450 and 850 μm dust continuum data was developed, which can be used to convert 12CO J =6-5and J =3-2 maps of integrated intensity (K km s−1) to molecular line flux (mJy beam−1) contaminating the continuum emission. Using HARP maps of 12CO J = 3-2, I quantified the amount of molecular line contamination found in the SCUBA-2 850 μm maps of three different regions, including NGC 1333 of Perseus and NGC 2071 and NGC 2024 of Orion B. Regions with ‘significant’ (i.e. > 20%) molecular line contamination correspond to molecular outflows. This method is now being used to remove molecular line contamination from regions with both SCUBA-2 dust continuum and HARP 12CO map coverage in the Gould Belt Legacy Survey (GBS). The Ophiuchus L1688 cloud was observed in all three CO J = 3-2 isotopologues. I carried out a molecular outflow analysis in the region on a list of 30 sources from the Spitzer ‘c2d’ survey [Evans et al., 2009]. Out of the 30 sources, 8 had confirmed bipolar outflows, 20 sources had ‘confused’ outflow detections and 2 sources did not have outflow detections. The Ophiuchus cloud was found to be gravitationally bound with the turbulent kinetic energy a factor of 7 lower than the gravitational binding energy. The high-velocity outflowing gas was found to be only 21% of the turbulence in the cloud, suggesting outflows are significant but not the dominant source of turbulence in the region. Other factors were found to influence the global high-velocity outflowing gas in addition to molecular outflows, including hot dust from nearby B-type stars, outflow remnants from less embedded sources and stellar winds from the Upper Scorpius OB association. To trace high density gas in the Ophiuchus L1688 cloud, HCO+ J = 4-3 was observed to further investigate the relationship between high column density and high density in the molecular cloud. Non-LTE codes RADEX and TORUS were used to develop density models corresponding to the HCO+ emission. The models involved both constant density and peaked density profiles. RADEX [van der Tak et al., 2007] models used a constant density model along the line-of-sight and indicated the HCO+ traced densities that were predominantly subthermally excited with den- sities ranging from 10^3–10^5 cm^−3. Line-of-sight estimates ranged from several parsecs to 90 pc, which was unrealistic for the Ophiuchus cloud. This lead to the implementation of peaked density profiles using the TORUS non-LTE radiative transfer code. Initial models used a ‘triangle’ density profile and a more complicated log-normal density probability density function (PDF) profile was subsequently implemented. Peaked density models were relatively successful at fitting the HCO+ data. Triangle models had density fits ranging from 0.2–2.0×10^6 cm^−3 and 0.1–0.3×10^6 cm^−3 for the 0.2 and 0.3 pc cloud length models re- spectively. Log-normal density models with constant-σ had peak density ranges from 0.2–1.0 ×10^5 cm^−3 and 0.6–2.0×10^5 cm^−3 for 0.2 and 0.3 pc models respectively. Similarly, log-normal models with varying-σ had lower and upper density limits corresponding to the range of FWHM velocities. Densities (lower and upper limits) ranged from 0.1–1.0 ×10^6 and 0.5–3.0 ×10^5 cm^-3 for the 0.2 and 0.3 pc models respectively. The result of the HCO+ density modelling indicated the distributions of starless, prestellar and protostellar cores do not have a preference for higher densities with respect to the rest of the cloud. This is contrary to past research suggesting the probability of finding a submillimetre core steeply rises as a function of column density (i.e. density; Belloche et al. 2011; Hatchell et al. 2005). Since the majority of sources are less embedded (i.e Class II/III), it is possible the evolutionary state of Ophiuchus is the main reason the small sample of Class 0/I protostars do not appear to have a preference for higher densities in the cloud.
|
Page generated in 0.0255 seconds