• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 8
  • 8
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 111
  • 111
  • 27
  • 22
  • 18
  • 17
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Variabilidade química e climática no registro do Testemunho de Gelo Mount Johns – Antártica

Carlos, Franciéle Schwanck January 2016 (has links)
Esta tese interpreta o registro ambiental de um testemunho de gelo antártico pela análise de elementostraço. Esse testemunho de gelo, daqui em diante chamado Mount Johns (MJ), foi coletado no manto de gelo da Antártica Ocidental (79°55’28”S e 94°23’18”W; 91,20 m de comprimento) no verão austral de 2008/09. O testemunho foi descontaminado e subamostrado no Climate Change Institute (University of Maine – Maine /EUA). As primeiras 2137 amostras, correspondentes aos 45 m superiores do testemunho, foram analisadas no espectrômetro de massas Element 2 do CCI para 24 elementos-traço (Sr, Cd, Cs, Ba, La, Ce, Pr, Pb, Bi, U, As, Li, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Na, Mg e K). Essa parte do testemunho representa 125 anos (1883–2008) de registro, segundo datação relativa baseada na variação sazonal nas concentrações de Na, Sr e S e na identificação dos principais eventos vulcânicos ocorridos no período. A taxa de acumulação média no local de amostragem foi 0,21 m a-1 em eq. H2O no mesmo período de tempo. As concentrações são controladas pelas variações climáticas sazonais (verão/inverno), por mudanças na circulação atmosféricas, por anomalias de temperatura, pela distância de transporte e pelas fontes naturais e antrópicas desses aerossóis. Baseada na análise dos fatores de enriquecimento crustal e marinho e em correlações de Pearson, as concentrações de Al, Ba, Ca, Fe, K, Mg, Mn, Na, S, Sr e Ti são de origem natural. Poeira e solo de fontes continentais, oriundas principalmente de áreas áridas na Austrália, Nova Zelândia e Patagônia, são consideradas importantes fontes de Al, Mg e Ti. Aerossóis marinhos do Pacífico Sul, transportados para o continente antártico pelas massas de ar, são fontes predominantes de Na, Sr, K, S e Ca. Para os elementos Ba, Fe e Mn, tanto fontes crustais como marinhas são significativas. Adicionalmente, Mn e S apresentam um aporte considerável de origem vulcânica (variando de 20–30% na concentração total). Os resultados também mostram enriquecimento significativo nas concentrações de arsênio devido a atividades antrópicas. Foi observado concentrações médias da ordem de 1,92 pg g-1 antes de 1900, aumentando até 7,94 pg g-1 em 1950. Este enriquecimento está diretamente relacionado às emissões da mineração e fundição de metais não-ferrosos na América do Sul, principalmente no Chile. A queda na concentração de arsênio observado no século XXI (concentração média de 1,94 pg g-1 após 1999) é interpretada como uma consequência à introdução de leis ambientais (em 1994) para reduzir emissões desse elemento durante os processos de mineração e fundição de cobre no Chile. O modelo de trajetórias HYSPLIT mostra uma clara variação sazonal no transporte entre os meses de verão/outono e inverno/primavera, onde predomina o transporte de oeste durante o ano todo e um transporte secundário de nordeste durante o verão/outono. As correlações entre as concentrações médias dos elementos-traço estudados e o modelo de reanálises ERA-Interim para o período 1979–2008, indicam que as concentrações de aerossóis marinhos são fortemente influenciadas pelas condições meteorológicas, por exemplo, por anomalias na temperatura da superfície do mar e concentração de gelo marinho. / This thesis interprets the environmental record of an Antarctic ice core by the analysis of trace elements. This ice core, henceforward called Mount Johns (MJ), was collected in the West Antarctica ice sheet (79°55'28"S and 94°23'18"W; 91.20 m long) in the austral summer of 2008/09. The core was decontaminated and subsampled at the Climate Change Institute (CCI, University of Maine - Maine / USA). The first 2137 samples, corresponding to the upper 45 m of the core, were analyzed in the CCI's JRC Element 2 spectrometer for 24 trace elements (Sr, Cd, Cs, Ba, La, Ce, Pr, Pb, Bi, U, As, Li, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Na, Mg and K). This part of the core represents a 125 years (1883– 2008) record, according to relative dating based on Na, Sr and S seasonal variations and on the identification of major volcanic events in the period. The mean accumulation rate for the sampling site was 0.21 m-1 in eq. H2O in the same time period. The concentrations are controlled by seasonal climatic changes (summer/winter), by changes in atmospheric circulation, temperature anomalies, the transport distance and the natural and anthropogenic sources of these aerosols. Based on analysis of crustal and marine enrichment factors and Pearson correlations, the Al, Ba, Ca, Fe, K, Mg, Mn, Na, S, Sr and Ti concentrations have natural origin. Dust and soil from continental sources, primarily coming from arid areas in Australia, New Zealand and Patagonia, are considered important sources of Al, Mg and Ti. South Pacific marine aerosols, transported to the Antarctic continent by air masses, are predominant sources of Na, Sr, K, S and Ca. For the elements Ba, Fe and Mn, both crustal and marine sources are significant. In addition, Mn and S show a considerable contribution of volcanic origin (ranging from 20-30% of the total concentration). The results also show significant enrichment in arsenic concentrations due to human activities. Before 1900 the mean concentration was approximately 1.92 pg g-1, rising to 7.94 pg g-1 in 1950. This enrichment is directly related to mining emissions and casting of non-ferrous metals in South America, mainly in Chile. The decrease in the arsenic concentration, observed in the twenty-first century (mean concentration of 1.94 pg g-1 after 1999) is interpreted as a consequence of the introduction of environmental laws (in 1994) to reduce emissions of this element during the cupper mining and smelting in Chile. The HYSPLIT trajectories model show a clear seasonal variation in transport between the summer/autumn all and winter/spring months, where predominates an eastward transport throughout the year and a secondary transport from the northeast during the summer/fall. Correlations between the mean concentrations of the studied trace elements and the ERA-Interim reanalysis models for the 1979-2008 period indicate that marine aerosols concentrations are heavily influenced by weather conditions, for example, by sea surface temperature and sea ice concentration anomalies.
62

Variabilidade química e climática no registro do Testemunho de Gelo Mount Johns – Antártica

Carlos, Franciéle Schwanck January 2016 (has links)
Esta tese interpreta o registro ambiental de um testemunho de gelo antártico pela análise de elementostraço. Esse testemunho de gelo, daqui em diante chamado Mount Johns (MJ), foi coletado no manto de gelo da Antártica Ocidental (79°55’28”S e 94°23’18”W; 91,20 m de comprimento) no verão austral de 2008/09. O testemunho foi descontaminado e subamostrado no Climate Change Institute (University of Maine – Maine /EUA). As primeiras 2137 amostras, correspondentes aos 45 m superiores do testemunho, foram analisadas no espectrômetro de massas Element 2 do CCI para 24 elementos-traço (Sr, Cd, Cs, Ba, La, Ce, Pr, Pb, Bi, U, As, Li, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Na, Mg e K). Essa parte do testemunho representa 125 anos (1883–2008) de registro, segundo datação relativa baseada na variação sazonal nas concentrações de Na, Sr e S e na identificação dos principais eventos vulcânicos ocorridos no período. A taxa de acumulação média no local de amostragem foi 0,21 m a-1 em eq. H2O no mesmo período de tempo. As concentrações são controladas pelas variações climáticas sazonais (verão/inverno), por mudanças na circulação atmosféricas, por anomalias de temperatura, pela distância de transporte e pelas fontes naturais e antrópicas desses aerossóis. Baseada na análise dos fatores de enriquecimento crustal e marinho e em correlações de Pearson, as concentrações de Al, Ba, Ca, Fe, K, Mg, Mn, Na, S, Sr e Ti são de origem natural. Poeira e solo de fontes continentais, oriundas principalmente de áreas áridas na Austrália, Nova Zelândia e Patagônia, são consideradas importantes fontes de Al, Mg e Ti. Aerossóis marinhos do Pacífico Sul, transportados para o continente antártico pelas massas de ar, são fontes predominantes de Na, Sr, K, S e Ca. Para os elementos Ba, Fe e Mn, tanto fontes crustais como marinhas são significativas. Adicionalmente, Mn e S apresentam um aporte considerável de origem vulcânica (variando de 20–30% na concentração total). Os resultados também mostram enriquecimento significativo nas concentrações de arsênio devido a atividades antrópicas. Foi observado concentrações médias da ordem de 1,92 pg g-1 antes de 1900, aumentando até 7,94 pg g-1 em 1950. Este enriquecimento está diretamente relacionado às emissões da mineração e fundição de metais não-ferrosos na América do Sul, principalmente no Chile. A queda na concentração de arsênio observado no século XXI (concentração média de 1,94 pg g-1 após 1999) é interpretada como uma consequência à introdução de leis ambientais (em 1994) para reduzir emissões desse elemento durante os processos de mineração e fundição de cobre no Chile. O modelo de trajetórias HYSPLIT mostra uma clara variação sazonal no transporte entre os meses de verão/outono e inverno/primavera, onde predomina o transporte de oeste durante o ano todo e um transporte secundário de nordeste durante o verão/outono. As correlações entre as concentrações médias dos elementos-traço estudados e o modelo de reanálises ERA-Interim para o período 1979–2008, indicam que as concentrações de aerossóis marinhos são fortemente influenciadas pelas condições meteorológicas, por exemplo, por anomalias na temperatura da superfície do mar e concentração de gelo marinho. / This thesis interprets the environmental record of an Antarctic ice core by the analysis of trace elements. This ice core, henceforward called Mount Johns (MJ), was collected in the West Antarctica ice sheet (79°55'28"S and 94°23'18"W; 91.20 m long) in the austral summer of 2008/09. The core was decontaminated and subsampled at the Climate Change Institute (CCI, University of Maine - Maine / USA). The first 2137 samples, corresponding to the upper 45 m of the core, were analyzed in the CCI's JRC Element 2 spectrometer for 24 trace elements (Sr, Cd, Cs, Ba, La, Ce, Pr, Pb, Bi, U, As, Li, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Na, Mg and K). This part of the core represents a 125 years (1883– 2008) record, according to relative dating based on Na, Sr and S seasonal variations and on the identification of major volcanic events in the period. The mean accumulation rate for the sampling site was 0.21 m-1 in eq. H2O in the same time period. The concentrations are controlled by seasonal climatic changes (summer/winter), by changes in atmospheric circulation, temperature anomalies, the transport distance and the natural and anthropogenic sources of these aerosols. Based on analysis of crustal and marine enrichment factors and Pearson correlations, the Al, Ba, Ca, Fe, K, Mg, Mn, Na, S, Sr and Ti concentrations have natural origin. Dust and soil from continental sources, primarily coming from arid areas in Australia, New Zealand and Patagonia, are considered important sources of Al, Mg and Ti. South Pacific marine aerosols, transported to the Antarctic continent by air masses, are predominant sources of Na, Sr, K, S and Ca. For the elements Ba, Fe and Mn, both crustal and marine sources are significant. In addition, Mn and S show a considerable contribution of volcanic origin (ranging from 20-30% of the total concentration). The results also show significant enrichment in arsenic concentrations due to human activities. Before 1900 the mean concentration was approximately 1.92 pg g-1, rising to 7.94 pg g-1 in 1950. This enrichment is directly related to mining emissions and casting of non-ferrous metals in South America, mainly in Chile. The decrease in the arsenic concentration, observed in the twenty-first century (mean concentration of 1.94 pg g-1 after 1999) is interpreted as a consequence of the introduction of environmental laws (in 1994) to reduce emissions of this element during the cupper mining and smelting in Chile. The HYSPLIT trajectories model show a clear seasonal variation in transport between the summer/autumn all and winter/spring months, where predominates an eastward transport throughout the year and a secondary transport from the northeast during the summer/fall. Correlations between the mean concentrations of the studied trace elements and the ERA-Interim reanalysis models for the 1979-2008 period indicate that marine aerosols concentrations are heavily influenced by weather conditions, for example, by sea surface temperature and sea ice concentration anomalies.
63

Determining the Timing and Rate of Southeastern Laurentide Ice Sheet Thinning During the Last Deglaciation with 10Be Dipsticks

Halsted, Christopher T. January 2018 (has links)
Thesis advisor: Jeremy D. Shakun / The deglacial extent chronology of the southeastern Laurentide Ice Sheet as it retreated through the northeastern United States and southern Quebec has been well constrained by multiple lines of evidence. By comparison, few data exist to constrain the thinning history of the southeastern Laurentide, resulting in lingering uncertainty about volume changes and dynamics of this ice mass during the deglacial period. To address the lack of thinning information, my team collected 120 samples for in-situ `10Be exposure dating from various elevations at numerous mountains in New England and southern Quebec. Monte Carlo regression analyses using the analytical uncertainties of exposure ages from each mountain are used to determine the most-likely timing and rate of ice thinning for that location, a technique known as the ‘dipstick approach’. While this larger project is ongoing, I have processed and measured 10Be concentrations of 42 samples for this thesis and present my preliminary results and interpretation here. Exposure ages from Peekamoose Mt. in southern NY suggest ice thinning early in the deglacial period (~19.5 – 17.5 ka), near the onset of the Heinrich Stadial I cold period. Samples from Franconia Notch, NH, and Mt. Mansfield, VT, suggest ice thinning from approximately 15 – 13 ka in northern New England, roughly coincident with the Bølling-Allerød warm period. Exposure ages from each of the northern New England dipsticks are nearly identical within 1σ internal uncertainty, indicating that ice thinning was rapid. Higher elevation (>1200 m a.s.l.) samples from the northern New England mountains appear to contain inherited 10Be from previous periods of exposure, indicating a lack of glacial erosion on these surfaces. My high-elevation samples with inherited 10Be suggest that these summit landscapes were preserved beneath cold-based, non-erosive ice during the last glacial and deglacial periods. 40 samples that have yet to be processed will provide more information on ice thinning around Killington Mt., VT, Mt. Greylock, MA, Mt. Bigelow, ME, and Mt. Jacques-Cartier, Quebec. Ultimately, this information will be used to create probabilistic reconstructions of the lowering southeastern Laurentide ice surface during its retreat. / Thesis (MS) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
64

Thermal state uncertainty assessment of glaciers and ice sheets: Detecting promising Oldest Ice sites in Antarctica

Van Liefferinge, Brice 02 March 2018 (has links) (PDF)
In a warming world, glaciers and ice sheets have an increasingly large influence on the environment, particularly through their contribution to sea level rise. Their response to anthropogenic climate change, in addition to natural variability, has a critical impact on dependent populations and will be key to predict future climates. Understanding the past natural transitions is also important as if the natural variability of the climate system is not well understood, we stand little change of accurately predicting future climate changes, especially in the context of rapid global warming. Ice cores represent the best time capsules for the recovery of paleo-climate informations. For that, the recovery of a suitable 1.5 million-year-old ice core in Antarctica is fundamental to better understand the natural climate reorganisation which occurred between 0.9 and 1.2 Ma. Constraining the englacial and basal temperature evolution of glaciers and ice sheets through time is the first step in understanding their temporal stability and therefore potential impacts on climate. Furthermore, obtaining the best constraints on basal conditions is essential as such million-year-old ice will be located very near to the bedrock, where the thermal regime has the strongest impact. However, measurements of current englacial and basal temperature have only been obtained at a few drill sites for glaciers and ice sheets. We must therefore turn to thermodynamical models to provide theoretical and statistical constraints on governing thermal processes. Thermodynamical models rely on a suite of governing equations, which we describe in this thesis. Our first study area is the McCall glacier, in Alaska (USA), where we show that the glacier cooled down in the warming climate of the last 50 years using a 1D thermodynamical model. We calculate the present-day englacial temperature distribution using recently acquired data in the form of englacial temperature measurements and radio-echo sounding surveys of the glacier. We show the important of absence of latent heat release due to the refreezing of meltwater inside an active surface layer and reconstruct the last 50 years of equilibrium line altitude (ELA) elevation changes. In the context of Beyond Epica Oldest Ice, a European project aimed at recovering a 1.5 million year-old ice core, we propose for the first time a map of the location of adequate drilling sites for the entire Antarctic Ice Sheet. We use a 3D thermomechanical model to calculate a new basal temperature map of the Antarctic Ice Sheet, as well as a 1D thermodynamical model to constrain the poorly known geothermal heat flux (GHF). These combined model runs use the latest acquired data sets for the GHF, ice flow velocity, ice thickness and subglacial lakes. In order to take into account 2 Ma of Antarctic climate history, we use a transient 1D thermodynamical model to provide constraints on GHF by calculating the maximum value of GHF allowed to keep frozen basal conditions everywhere underneath the ice sheet. These values are then statistically compared to published GHF data sets to propose a probabilistic map of frozen and thawed bedrock locations. This transient model uses high spatial resolution radar data acquired over the Dome Fuji and Dome C regions to examine their likelihood of having preserved 1.5-million-year ice. We define a number of important criteria such as GHF, bedrock variability, ice thickness and other parameter values for Oldest Ice survival. We anticipate that our methods will be highly relevant for Oldest Ice prospection in other areas of the ice sheet that so far remain little or un-surveyed, as well as for the thermal modelling of other glaciers and ice sheets, and in particular, of the Greenland Ice Sheet. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
65

Quantifying Feedbacks Between Ice Flow, Grain Size, and Basal Meltwater on Annual and Decadal Time-Scales Using a 2-D Ice Sheet Model:

Rines, Joshua H. January 2022 (has links)
Thesis advisor: Mark D. Behn / Ice sheet flow is strongly controlled by the conditions at the ice-bed interface. While these processes are hard to observe directly, comparisons between numerical modeling and ice surface observations can be used to indirectly infer subglacial processes. Specifically, seasonal summer speed up near the margin of the Greenland Ice Sheet (GIS) has been linked to the presence of subglacial water. For decades, the Glen flow law has been the most widely-accepted constitutive relation for modeling ice flow. However, while the Glen law captures the temperature-dependent, nonlinear viscosity of ice, it does not explicitly incorporate ice grain size, which has been shown in laboratory experiments to influence ice rheology. To compensate for the lack of explicit grain size dependence, ice sheet models often utilize an “enhancement factor” that modifies the flow law to better match observations, but does not provide insight into the physical processes at play. Using a grain size sensitive rheology that incorporates grain size evolution due to dynamic recrystallization and grain growth, I model the effects of seasonal variations of subglacial hydrology in a 2-D vertical cross-section of ice flow on both annual and inter-annual timescales. The presence of subglacial water reduces the frictional coupling between the ice and the bed. Here I simulate the presence of water at the ice-bed interface during the melt season using patches of free-slip and explore a range of patch sizes and geometries to investigate their role in modulating ice surface velocities and grain size within the ice. I compare modeled winter and summer surface velocities to observations taken on the western margin of the GIS and find that realistic surface velocities are achievable using agrain size sensitive flow law without the introduction of an enhancement factor. Further, the grain size of the internal ice responds on an inter-annual timescale to these seasonal forcings at the bed, potentially leading to long-term changes in surface velocities. / Thesis (MS) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
66

Interactions climat-calotte durant la greenhouse Crétacé-Paléogène (120-34 Ma) : influence de la paléogéographie et du CO2 atmosphérique / Climate-ice sheets interaction during the Cretaceous-Paleogene greenhouse (120-34 Ma) : impact of paleogeography and atmospheric CO2

Ladant, Jean-Baptiste 30 November 2015 (has links)
Les enregistrements climatiques globaux à l’échelle géologique entre le Crétacé et le début du Cénozoïque indiquent des variations de grande amplitude. Sur le long terme, celles-ci sont déterminées par l’équilibre entre la composition atmosphérique en gaz à effet de serre, principalement le CO2, issus du dégazage volcanique et l’altération continentale, modulée par les mouvements tectoniques des continents. Dans cette thèse, les liens entre paléogéographie et CO2 ont été étudiés dans le contexte des interactions entre climat et calottes de glace au cours d’un intervalle de temps dit de « greenhouse », entre 120 et 34 Ma. L’utilisation d’une suite de modèles impliquant un modèle couplé moyenne résolution, un modèle atmosphérique haute résolution et un modèle de calotte de glace, a permis de montrer que les changements paléogéographiques survenant au Crétacé ont régulé la présence de glace en Antarctique. Dans un second temps, une nouvelle méthode de couplage climat-calotte a été développée pour étudier la glaciation Eocène-Oligocène. Ces développements ont permis de reconstruire une évolution fidèle de celle-ci, en bon accord avec les données. Deux rétroactions liées à cette glaciation et à la chute concomitante du CO2 atmosphérique sont étudiées. En premier lieu, l’impact de la glaciation sur le Courant Circumpolaire Antarctique est abordé, montrant que celle-ci génère une intensification de ce courant. Ensuite, au sein d’une étude mêlant données et modèles pour documenter la présence de moussons en Asie dès l’Eocène moyen, il est montré que le changement climatique de la fin de l’Eocène induit une baisse d’intensité de la mousson asiatique. Enfin, dans la perspective d’analyser les conséquences des changements paléogéographiques du Cénozoïque sur la biogéochimie marine, des tests de sensibilité aux passages océaniques de Panama et de Drake ont été réalisés. / On geological timescales, global climate proxies indicate that variations of large magnitude occur between the Cretaceous and the Cenozoic. On the long term, these variations are mostly determined by the equilibrium between the greenhouse gases composition of the atmosphere, primarily the CO2, and continental weathering set up by the spatial location of Earth’s landmasses. Here, the links between paleogeography and CO2 are looked upon in a climate-ice sheet interactions framework during a greenhouse period of Earth history (120 – 34 Ma). A suite of models involving both coupled and ice sheet models have been used to demonstrate that paleogeographic reorganizations have regulated the presence of ice over Antarctica during the Cretaceous. In a second time and using a similar setup, a new method for climate-ice sheet coupling have been developed and applied to the Eocene-Oligocene (EO) glaciation to yield a new scenario of ice evolution, in good agreement with data. Two feedbacks related to this glaciation and the coeval atmospheric CO2 fall are investigated. First, it is shown that the EO glaciation generates an intensification of the Antarctic Circumpolar Current. Second, within a data-model study demonstrating active Asian monsoons as old as the mid-Eocene, it is shown that the climatic change at the end of the Eocene is responsible for a reduction in the intensity of the Asian monsoon. Finally, with the aim of analysing the effect of paleogeographic changes on marine biogeochemistry during the Cenozoic, sensitivity tests to Drake Passage and Panama Seaway have been carried out.
67

Sensibilité et rétroactions de la calotte groenlandaise face à des changements climatiques passé et futur / Sensibility and feedbacks of the Greenland ice sheet under past or future warm climate

Le clec'h, Sébastien 29 January 2018 (has links)
L’évolution future de la calotte groenlandaise est une préoccupation sociétale majeure de par sa contribution potentielle à la remontée du niveau marin global. Elle est contrôlée par la dynamique de la glace et les conditions climatiques. Sa modélisation est un véritable défi à cause du manque de données disponibles à l’échelle de la calotte, et des processus d’interactions climat-calotte à très fine échelle. Pour mieux comprendre le rôle du Groenland dans le système climatique, j’ai d’abord développé une méthode d’inversion pour obtenir des conditions initiales fiables du modèle de glace GRISLI.J’ai ensuite appliqué cette procédure au couplage de GRISLI avec un modèle atmosphérique régional (MAR). J’ai alors montré que la représentation des interactions atmosphère – calotte est essentielle pour ne pas sous-estimer la remontée du niveau marin dans les projections pluri-centennales. Enfin, nous avons appliqué ces modèles au dernier interglaciaire (130 – 115 ka), période chaude au cours de laquelle le niveau marin était 6-9 m plus haut qu’à l’actuel. Ce travail montre que l’apport de la régionalisation des champs atmosphériques grande échelle est nécessaire pour la représentation des interactions climat – calottes. / The evolution of the Greenland ice sheet in the future is a major societal issue, given its potential contribution to global sea level rise. The ice sheet is controlled by ice dynamics and climate conditions. Its modelling is a challenge due to the lack of data covering the whole ice sheet and the fine scale of the interaction processes between the ice sheet and the atmosphere. To improve our understanding of the role of the Greenland ice sheet in the climate system, I have first developed an inverse method to obtain appropriate initial conditions for the GRISLI ice sheet model. I then applied this procedure for coupling the MAR regional atmospheric model to GRISLI. I have shown that representing atmosphere – ice sheet interactions at fine scales is essential to avoid underestimating global sea level rise in multi-centennial future projections. Finally, I have used the same models to study the last interglacial (130 – 115 ky BP), which is a warm period during which the sea-level was 6 to 9 m higher than today. My work shows that downscaling large scale model outputs at the regional scale is required to represent climate – ice sheet interactions.
68

Laurentide Ice Sheet Retreat during the Younger Dryas: Central Upper Peninsula of Michigan, USA

Walters, Kent A. 15 October 2013 (has links)
No description available.
69

Investigations of the Dry Snow Zone of the Greenland Ice Sheet Using QuikSCAT

Moon, Kevin Randall 02 July 2012 (has links) (PDF)
The Greenland ice sheet is an area of great interest to the scientific community due to its role as an important bellwether for the global climate. Satellite-borne scatterometers are particularly well-suited to studying temporal changes in the Greenland ice sheet because of their high spatial coverage, frequent sampling, and sensitivity to the presence of liquid water. The dry snow zone is the largest component of the Greenland ice sheet and is identified as the region that experiences negligible annual melt. Due to the lack of melt in the dry snow zone, backscatter was previously assumed to be relatively constant over time in this region. However, this thesis shows that a small seasonal variation in backscatter is present in QuikSCAT data in the dry snow zone. Understanding the cause of this seasonal variability is important to verify the accuracy of QuikSCAT measurements, to better understand the ice sheet conditions, and to improve future scatterometer calibration efforts that may use ice sheets as calibration targets.This thesis provides a study of the temporal behavior of backscatter in the dry snow zone of the Greenland ice sheet focusing on seasonal variation. Spatial averaging of backscatter and the Karhunen-Lo`eve transform are used to identify and study the dominant patterns in annual backscatter behavior. Several QuikSCAT instrumental parameters are tested as possible causes of seasonal variation in backscatter in the dry snow zone to verify the accuracy of QuikSCAT products. None of the tested parameters are found to be related to seasonal variation. Further evidence is given that suggests that the cause of the seasonal variation is geophysical and several geophysical factors are tested. Temperature is found to be highly related to dry snow backscatter and therefore may be driving the seasonal variation in backscatter in the dry snow zone.
70

Performance Optimization of Ice Sheet Simulation Models : Examining ways to speed up simulations, enabling for upscaling with more data

Brink, Fredrika January 2023 (has links)
This study aims to examine how simulation models can be performance optimized in Python. Optimized in the sense of executing faster and enabling upscaling with more data. To meet this aim, two models simulating the Greenland ice sheet are studied. The simulation of ice sheets is an important part of glaciology and climate change research. By following an iterative spiral model of software development and evolution with focus on the bottlenecks, it is possible to optimize the most time-consuming code sections. Several iterations of implementing tools and techniques suitable for Python code are performed, such as implementing libraries, changing data structures, and improving code hygiene. Once the models are optimized, the upscaling with a new dataset, called CARRA, created from observations and modelled outcomes combined, is studied. The results indicate that the most effective approach of performance optimizing is to implement the Numba library to compile critical code sections to machine code and to parallelize the simulations using Joblib. Depending on the data used and the size and granularity of the simulations, simulations between 1.5 and 3.2 times the speed are gained. When simulating CARRA data, the optimized code still results in faster simulations. However, the outcome demonstrates that differences exist between the ice sheets simulated by the dataset initially used and CARRA data. Even though the CARRA dataset yields a different glaciological result, the overall changes in the ice sheet are similar to the changes shown in the initial dataset simulations. The CARRA dataset could possibly be used for getting an overview of what is happening to the ice sheet, but not for making detailed analyses, where exact numbers are needed.

Page generated in 0.0274 seconds