• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • Tagged with
  • 13
  • 13
  • 10
  • 10
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulateur pour l'étude de la visibilité dans les environnements enfumés.

Ribardière, Mickaël 16 December 2010 (has links) (PDF)
La simulation d'éclairage peut être utilisée pour l'étude et l'analyse du confort visuel ou de la performance de dispositifs d'éclairage. Pour répondre à de tels objectifs, les méthodes utilisées doivent résoudre de manière précise et réaliste la problématique de l'illumination globale. De plus, les logiciels de simulation d'éclairage doivent souvent manipuler des scènes géométriquement complexes mais aussi exploiter les propriétés photométriques réalistes des sources artificielles étendues, des sources naturelles et des matériaux. L'objectif du travail de thèse est d'étendre les possibilités de ces outils à la prise en compte d'environnements enfumés dans lesquels la densité et la répartition des fumées évoluent avec le temps, tout en considérant le déplacement d'un observateur virtuel dans la scène. De telles possibilités ouvriraient le champ des possibilités de la simulation d'éclairage à des cas d'étude de la vision dans les fumées pour la sécurité incendie par exemple. Suite à une analyse globale du problème (interaction lumière/matériaux, lumière/fumée, évolution de la fumée dans le temps), le travail de recherche est décomposé en trois parties. Nous présentons dans un premier temps une nouvelle méthode de résolution de l'illumination globale pour les objets surfaciques basée sur la méthode de cache d'éclairement avec des enregistrements dont les zones d'influence s'adaptent à la géométrie et aux variations d'éclairage. Nous appelons ces enregistrements des \textit{enregistrements adaptatifs} Cette technique permet de contrôler plus finement la densité du cache. Par la suite, les travaux s'intéressent en détail à la problématique des milieux participatifs statiques et de leur interaction avec la lumière. Une méthode de résolution, s'appuyant sur les travaux de la première partie, est alors proposée. Les enregistrements adaptatifs sont créés dans l'espace en fonction des caractéristiques de la fumée (coefficients de diffusion et d'absorption) et de son influence sur l'éclairage global. Enfin, l'aspect dynamique est étudié et une extension temporelle de la méthode de simulation d'éclairage en présence de milieux participatifs est alors proposée. Nous introduisons le concept d'enregistrements adaptatifs spatio-temporels (pour les surfaces et les volumes) pour interpoler les variations d'éclairement à la fois dans l'espace et dans le temps.
2

Sampling and Variance Analysis for Monte Carlo Integration in Spherical Domain / Analyse de variance et échantillonnage pour l'intégration Monte Carlo sur la sphère

Singh, Gurprit 08 September 2015 (has links)
Cette thèse introduit un cadre théorique pour l'étude de différents schémas d'échantillonnage dans un domaine sphérique, et de leurs effets sur le calcul d'intégrales pour l'illumination globale. Le calcul de l'illumination (du transport lumineux) est un composant majeur de la synthèse d'images réalistes, qui se traduit par l'évaluation d'intégrales multidimensionnelles. Les schémas d'intégration numériques de type Monte-Carlo sont utilisés intensivement pour le calcul de telles intégrales. L'un des aspects majeurs de tout schéma d'intégration numérique est l'échantillonnage. En effet, la façon dont les échantillons sont distribués dans le domaine d'intégration peut fortement affecter le résultat final. Par exemple, pour la synthèse d'images, les effets liés aux différents schémas d'échantillonnage apparaissent sous la forme d'artéfacts structurés ou, au contrire, de bruit non structuré. Dans de nombreuses situations, des résultats complètement faux (biaisés) peuvent être obtenus à cause du schéma d'échantillonnage utilisé pour réaliser l'intégration. La distribution d'un échantillonnage peut être caractérisée à l'aide de son spectre de Fourier. Des schémas d'échantillonnage peuvent être générés à partir d'un spectre de puissance dans le domaine de Fourier. Cette technique peut être utilisée pour améliorer l'erreur d'intégration, car un tel contrôle spectral permet d'adapter le schéma d'échantillonnage au spectre de Fourier de l'intégrande. Il n'existe cependant pas de relation directe entre l'erreur dans l'intégration par méthode de Monte-Carlo et le spectre de puissance de la distribution des échantillons. Dans ces travaux, nous proposons une formulation de la variance qui établit un lien direct entre la variance d'une méthode de Monte-Carlo, les spectres de puissance du schéma d'échantillonnage ainsi que de l'intégrande. Pour obtenir notre formulation de la variance, nous utilisons la notion d'homogénéité de la distribution des échantillons qui permet d'exprimer l'erreur de l'intégration par une méthode de Monte-Carlo uniquement sous forme de variance. À partir de cette formulation de la variance, nous développons un outil d'analyse pouvant être utilisé pour déterminer le taux de convergence théorique de la variance de différents schémas d'échantillonnage proposés dans la littérature. Notre analyse fournit un éclairage sur les bonnes pratiques à mettre en œuvre dans la définition de nouveaux schémas d'échantillonnage basés sur l'intégrande / This dissertation introduces a theoretical framework to study different sampling patterns in the spherical domain and their effects in the evaluation of global illumination integrals. Evaluating illumination (light transport) is one of the most essential aspect in image synthesis to achieve realism which involves solving multi-dimensional space integrals. Monte Carlo based numerical integration schemes are heavily employed to solve these high dimensional integrals. One of the most important aspect of any numerical integration method is sampling. The way samples are distributed on an integration domain can greatly affect the final result. For example, in images, the effects of various sampling patterns appear in the form of either structural artifacts or completely unstructured noise. In many cases, we may get completely false (biased) results due to the sampling pattern used in integration. The distribution of sampling patterns can be characterized using their Fourier power spectra. It is also possible to use the Fourier power spectrum as input, to generate the corresponding sample distribution. This further allows spectral control over the sample distributions. Since this spectral control allows tailoring new sampling patterns directly from the input Fourier power spectrum, it can be used to improve error in integration. However, a direct relation between the error in Monte Carlo integration and the sampling power spectrum is missing. In this work, we propose a variance formulation, that establishes a direct link between the variance in Monte Carlo integration and the power spectra of both the sampling pattern and the integrand involved. To derive our closed-form variance formulation, we use the notion of homogeneous sample distributions that allows expression of error in Monte Carlo integration, only in the form of variance. Based on our variance formulation, we develop an analysis tool that can be used to derive theoretical variance convergence rates of various state-of-the-art sampling patterns. Our analysis gives insights to design principles that can be used to tailor new sampling patterns based on the integrand
3

Optimisation et visualisation de cache de luminance en éclairage global / optimization and visualization of a radiance cache in global Illumination

Omidvar, Mahmoud 20 May 2015 (has links)
La simulation d'éclairage est un processus qui s'avère plus complexe (temps de calcul, coût mémoire, mise en œuvre complexe) aussi bien pour les matériaux brillants que pour les matériaux lambertiens ou spéculaires. Afin d'éviter le calcul coûteux de certains termes de l'équation de luminance (convolution entre la fonction de réflexion des matériaux et la distribution de luminance de l'environnement), nous proposons une nouvelle structure de données appelée Source Surfacique Équivalente (SSE). L'utilisation de cette structure de données nécessite le pré-calcul puis la modélisation du comportement des matériaux soumis à divers types de sources lumineuses (positions, étendues). L'exploitation d'algorithmes génétiques nous permet de déterminer les paramètres des modèles de BRDF, en introduisant une première source d'approximation. L'approche de simulation d'éclairage utilisée est basée sur un cache de luminance. Ce dernier consiste à stocker l'éclairement incident sous forme de SSE en des points appelés enregistrements. Durant la simulation d'éclairage, l'environnement lumineux doit également être assimilé à un ensemble de sources surfaciques équivalentes (en chaque enregistrement) qu'il convient de définir de manière dynamique. Cette phase constitue une deuxième source d'erreur. Toutefois, l'incertitude globale ne se réduit pas au cumul des approximations réalisées à chaque étape. Les comparatives réalisées prouvent, au contraire, que l'approche des Sources Surfaciques Équivalentes est particulièrement intéressante pour des matériaux rugueux ou pour les matériaux très brillants placés dans des environnements relativement uniformes. L'utilisation de SSE a permis de réduire considérablement à la fois le coût mémoire et le temps de calcul. Une fois que les SSE sont calculés en chaque enregistrement et pour un certain nombre de points de vue, nous proposons une nouvelle méthode de visualisation interactive exploitant les performances des GPU (carte graphique) et s'avérant plus rapide que les méthodes existantes. Enfin nous traiterons le cas où les grandeurs photométriques sont spectrales, ce qui est très important lorsqu'il s'agit de réaliser des simulations d'éclairage précises. Nous montrerons comment adapter les zones d'influence des enregistrements en fonction des gradients de luminance et de la géométrie autour des enregistrements. / Radiance caching methods have proven efficient for global illumination. Their goal is to compute precisely illumination values (incident radiance or irradiance) at a reasonable number of points lying on the scene surfaces. These points, called records, are stored in a cache used for estimating illumination of other points in the scene. Unfortunately, with records lying on glossy surfaces, the irradiance value alone is not sufficient to evaluate the reflected radiance; each record should also store the incident radiance for all incident directions. Memory storage can be reduced with projection techniques using spherical harmonics or other basis functions. These techniques provide good results with low shininess BRDFs. However, they get impractical for shininess of even moderate value since the number of projection coefficients increase drastically. In this paper, we propose a new radiance caching method, that handles highly glossy surfaces, while requiring a low memory storage. Each cache record stores a coarse representation of the incident illumination thanks to a new data structure called Equivalent Area light Sources (EAS), capable of handling fuzzy mirror surfaces. In addition, our method proposes a new simplification of the interpolation process since it avoids the need for expressing and evaluating complex gradients. Moreover, we propose a new GPU based visualisation method which exploits these EAS data structure. Thus, interactive rendering is done faster than existing methods. Finally, physical ligting simulations need to manipulate spectral physical quantities. We demonstrate in our work how these quantities can be handle with our technic by adapting the record influence zone depending on the radiance gradients and the geometry around the records.
4

Modélisation et simulation d'éclairage à base topologique : application aux environnements architecturaux complexes

FRADIN, David 17 December 2004 (has links) (PDF)
Modéliser et visualiser des complexes architecturaux reste aujourd'hui un problème difficile, à cause de la grande masse de données qu'un bâtiment meublé peut représenter. L'objectif de cette thèse est la création d'une chaîne complète allant de la modélisation géométrique jusqu'à la simulation d'éclairage. Nous proposons tout d'abord un modèle à base topologique permettant de représenter des grands bâtiments. Cette structure est une hiérarchie de cartes généralisées munies de partitions multiples. Un prototype de modeleur a été développé autour d'une version optimisée de ce modèle et quelques bâtiments ont été modélisés. De nombreuses informations (géométrie, topologie et sémantique) peuvent être extraites de notre modèle pour optimiser les algorithmes de visualisation. Nous montrons comment accélérer un lancer de rayons à l'aide des informations de modélisation et proposons un algorithme rapide d'illumination globale basé sur un lancer de photons.
5

Simulation globale de l'éclairage pour des séquences animées prenant en en compte la cohérence temporelle

Damez, Cyrille 10 December 2001 (has links) (PDF)
Les méthodes globales de simulation de l'éclairage permettent, à la différence des méthodes d'éclairage local, d'exprimer l'équilibre énergétique dans les échanges entre différents objets, et donc de simuler précisément les effets subtils d'éclairage dûs aux nombreuses inter-réflexions. Il est donc naturel de souhaiter les utiliser pour la synthèse réaliste de films d'animation. Plutôt que de résoudre une succession d'équations intégrales tri-dimensionelles, nous modélisons les échanges lumineux ayant lieu au cours de l'animation sous la forme d'une unique équation intégrale quadri-dimensionelle. Dans le cas ou l'intégralité des mouvements est connue à l'avance, nous proposons une extension de l'algorithme de radiosité hiérarchique mettant à profit la cohérence temporelle. La radiosité en chaque point et à chaque instant y est exprimée dans une base de fonctions hiérarchiques définies sur un maillage produit par un processus de raffinement. L'extension de ce maillage à un espace à quatre dimensions nous permet de calculer des échanges lumineux sur un intervalle de temps fini au lieu d'une date donnée. L'algorithme ainsi défini permet la simulation de l'éclairage global diffus dans une scène animée, dans un temps largement inférieur, avec une qualité équivalente. Nous avons développé pour cela de nouveaux oracles de raffinement ad hoc, que nous présentons ici. Afin de permettre le calcul de scènes géométriquement complexes, nous présentons une nouvelle politique de regroupement hiérarchique des objets adaptée au cas quadri-dimensionnel. Nous présentons également un algorithme permettant la réduction des discontinuités temporelles dues aux approximations effectuées lors de la résolution, basé sur l'emploi de bases de multi-ondelettes. Finalement, nous présentons un mécanisme d'ordonnancement des calculs et de sauvegarde temporaire sur une mémoire de masse permettant de réduire la consommation en mémoire vive de l'algorithme.
6

Analyse spatiale et spectrale des motifs d'échantillonnage pour l'intégration Monte Carlo / Spatial and spectral analysis of sampling patterns for Monte Carlo integration

Pilleboue, Adrien 19 November 2015 (has links)
L’échantillonnage est une étape clé dans le rendu graphique. Il permet d’intégrer la lumière arrivant en un point de la scène pour en calculer sa couleur. Généralement, la méthode utilisée est l’intégration Monte Carlo qui approxime cette intégrale en choisissant un nombre fini d’échantillons. La réduction du biais et de la variance de l’intégration Monte Carlo est devenue une des grandes problématiques en rendu réaliste. Les techniques trouvées consistent à placer les points d’échantillonnage avec intelligence de façon à rendre la distribution la plus uniforme possible tout en évitant les régularités. Les années 80 ont été de ce point de vue un tournant dans ce domaine, avec l’apparition de nouvelles méthodes stochastiques. Ces méthodes ont, grâce à une meilleure compréhension des liens entre intégration Monte Carlo et échantillonnage, permis de réduire le bruit et la variance des images générées, et donc d’améliorer leur qualité. En parallèle, la complexité des méthodes d’échantillonnage s’est considérablement améliorée, permettant d’obtenir des méthodes à la fois rapides et efficaces en termes de qualité. Cependant, ces avancées ont jusqu’à là été faites par tâtonnement et se sont axées sur deux points majeurs : l’amélioration de l’uniformité du motif d’échantillonnage et la suppression des régularités. Bien que des théories permettant de borner l’erreur d’intégration existent, elles sont souvent limitées, voire inapplicables dans le domaine de l’informatique graphique. Cette thèse propose de rassembler les outils d’analyse des motifs d’échantillonnages et de les mettre en relation. Ces outils peuvent caractériser des propriétés spatiales, comme la distribution des distances entre points, ou bien spectrales à l’aide de la transformée de Fourier. Nous avons ensuite utilisé ces outils afin de donner une expression simple de la variance et du biais dans l’intégration Monte Carlo, en utilisant des prérequis compatibles avec le rendu d’image. Finalement, nous présentons une boite à outils théorique permettant de déterminer la vitesse de convergence d’une méthode d’échantillonnage à partir de son profil spectral. Cette boite à outils est notamment utilisée afin de classifier les méthodes d’échantillonnage existantes, mais aussi pour donner des indications sur les principes fondamentaux nécessaires à la conception de nouveaux algorithmes d’échantillonnage / Sampling is a key step in rendering pipeline. It allows the integration of light arriving to a point of the scene in order to calculate its color. Monte Carlo integration is generally the most used method to approximate that integral by choosing a finite number of samples. Reducing the bias and the variance of Monte Carlo integration has become one of the most important issues in realistic rendering. The solutions found are based on smartly positioning the samples points in a way that maximizes the uniformity of the distribution while avoiding the regularities. From this point of view, the 80s were a turning point in this domain, as new stochastic methods appeared. With a better comprehension of links between Monte Carlo integration and sampling, these methods allow the reduction of noise and of variance in rendered images. In parallel, the complexity of sampling methods has considerably enhanced, enabling to have fast as well as good quality methods. However, these improvements have been done by trial and error focusing on two major points : the improvement of sampling pattern uniformity, and the suppression of regularities. Even though there exists some theories allowing to bound the error of the integration, they are usually limited, and even inapplicable in computer graphics. This thesis proposes to gather the analysis tools of sampling patterns and to connect them together. These tools can characterize spatial properties such as the distribution of distances between points, as well as spectral properties via Fourier transformation. Secondly, we have used these tools in order to give a simple expression of the bias and the variance for Monte Carlo integration ; this is done by using prerequisites compatible with image rendering. Finally, we present a theoretical toolbox allowing to determine the convergence speed of a sampling method from its spectral profile. This toolbox is used specifically to give indications about the design principles necessary for new sampling algorithms
7

Peinture de lumière incidente dans des scènes 3D

Rozon, Frédérik 08 1900 (has links)
Le design d'éclairage est une tâche qui est normalement faite manuellement, où les artistes doivent manipuler les paramètres de plusieurs sources de lumière pour obtenir le résultat désiré. Cette tâche est difficile, car elle n'est pas intuitive. Il existe déjà plusieurs systèmes permettant de dessiner directement sur les objets afin de positionner ou modifier des sources de lumière. Malheureusement, ces systèmes ont plusieurs limitations telles qu'ils ne considèrent que l'illumination locale, la caméra est fixe, etc. Dans ces deux cas, ceci représente une limitation par rapport à l'exactitude ou la versatilité de ces systèmes. L'illumination globale est importante, car elle ajoute énormément au réalisme d'une scène en capturant toutes les interréflexions de la lumière sur les surfaces. Ceci implique que les sources de lumière peuvent avoir de l'influence sur des surfaces qui ne sont pas directement exposées. Dans ce mémoire, on se consacre à un sous-problème du design de l'éclairage: la sélection et la manipulation de l'intensité de sources de lumière. Nous présentons deux systèmes permettant de peindre sur des objets dans une scène 3D des intentions de lumière incidente afin de modifier l'illumination de la surface. De ces coups de pinceau, le système trouve automatiquement les sources de lumière qui devront être modifiées et change leur intensité pour effectuer les changements désirés. La nouveauté repose sur la gestion de l'illumination globale, des surfaces transparentes et des milieux participatifs et sur le fait que la caméra n'est pas fixe. On présente également différentes stratégies de sélection de modifications des sources de lumière. Le premier système utilise une carte d'environnement comme représentation intermédiaire de l'environnement autour des objets. Le deuxième système sauvegarde l'information de l'environnement pour chaque sommet de chaque objet. / Lighting design is usually a task that is done manually, where the artists must manipulate the parameters of several light sources to obtain the desired result. This task is difficult because it is not intuitive. Some systems already exist that enable a user to paint light directly on objects in a scene to position or alter light sources. Unfortunately, these systems have some limitations such that they only consider local lighting, or the camera must be fixed, etc. Either way, this limitates the accuracy or the versatility of these systems. Global illumination is important because it adds a lot of realism to a scene by capturing all the light interreflections on the surfaces. This means that light sources can influence surfaces even if they are not directly exposed. In this M. Sc. thesis, we study a subset of the lighting design problem: the selection and alteration of the intensity of light sources. We present two different systems to design lighting on objects in 3D scenes. The user paints light intentions directly on the objects to alter the surface illumination. From these paint strokes, the systems find the light sources and alter their intensity to obtain as much as possible what the user wants. The novelty of our technique is that global illumination, transparent surfaces and subsurface scattering are all considered, and also that the camera is free to take any position. We also present strategies for selecting and altering the light sources. The first system uses an environment map as an intermediate representation of the environment surrounding the objects. The second system saves all the information of the environment for each vertex of each object.
8

Amélioration du photon mapping pour un scénario walkthrough dans un objectif de rendu physiquement réaliste en temps réel .

Graglia, Florian 26 November 2012 (has links)
L'un des objectifs lors du développement d'un produit industriel est d'obtenir un prototype numérique valide et réaliste. Cette thèse a pour objectif d'améliorer la qualité des simulations dans le contexte d'un processus de production. Ces processus impliquent souvent un rendu de type "walkthrough", avec une géométrie fixe mais un déplacement continu de l'observateur. Nous nous intéresserons donc plus précisément aux méthodes de rendu physiquement réaliste de scènes complexes pour un scénario "walkthrough". Durant le rendu, l'utilisateur doit pouvoir mesurer précisément la radiance d'un point ou d'une zone donnée, ainsi que modifier en temps réel la puissance des sources lumineuses. Fondée sur la méthode du photon mapping, nos travaux montrent les modifications à apporter aux algorithmes afin d'améliorer à la fois la qualité des images et le temps de calcul du processus de rendu. / One of the goals when developing the product is to immediately obtain a real and valid prototype. This thesis provide new rendering methods to increase the quality of the simulations during the upstream work of the production pipeline. The latter usually requires a walkthrough rendering. Thus, we focuses on the physically-based rendering methods of complex scenes in walkthrough. During the rendering, the end-users must be able to measure the illuminate rates and to interactively modify the power of the light source to test different lighting ambiances. Based on the original photon mapping method, our work shows how some modifications can decrease the calculation time and improve the quality of the resulting images according to this specific context.
9

Peinture de lumière incidente dans des scènes 3D

Rozon, Frédérik 08 1900 (has links)
Le design d'éclairage est une tâche qui est normalement faite manuellement, où les artistes doivent manipuler les paramètres de plusieurs sources de lumière pour obtenir le résultat désiré. Cette tâche est difficile, car elle n'est pas intuitive. Il existe déjà plusieurs systèmes permettant de dessiner directement sur les objets afin de positionner ou modifier des sources de lumière. Malheureusement, ces systèmes ont plusieurs limitations telles qu'ils ne considèrent que l'illumination locale, la caméra est fixe, etc. Dans ces deux cas, ceci représente une limitation par rapport à l'exactitude ou la versatilité de ces systèmes. L'illumination globale est importante, car elle ajoute énormément au réalisme d'une scène en capturant toutes les interréflexions de la lumière sur les surfaces. Ceci implique que les sources de lumière peuvent avoir de l'influence sur des surfaces qui ne sont pas directement exposées. Dans ce mémoire, on se consacre à un sous-problème du design de l'éclairage: la sélection et la manipulation de l'intensité de sources de lumière. Nous présentons deux systèmes permettant de peindre sur des objets dans une scène 3D des intentions de lumière incidente afin de modifier l'illumination de la surface. De ces coups de pinceau, le système trouve automatiquement les sources de lumière qui devront être modifiées et change leur intensité pour effectuer les changements désirés. La nouveauté repose sur la gestion de l'illumination globale, des surfaces transparentes et des milieux participatifs et sur le fait que la caméra n'est pas fixe. On présente également différentes stratégies de sélection de modifications des sources de lumière. Le premier système utilise une carte d'environnement comme représentation intermédiaire de l'environnement autour des objets. Le deuxième système sauvegarde l'information de l'environnement pour chaque sommet de chaque objet. / Lighting design is usually a task that is done manually, where the artists must manipulate the parameters of several light sources to obtain the desired result. This task is difficult because it is not intuitive. Some systems already exist that enable a user to paint light directly on objects in a scene to position or alter light sources. Unfortunately, these systems have some limitations such that they only consider local lighting, or the camera must be fixed, etc. Either way, this limitates the accuracy or the versatility of these systems. Global illumination is important because it adds a lot of realism to a scene by capturing all the light interreflections on the surfaces. This means that light sources can influence surfaces even if they are not directly exposed. In this M. Sc. thesis, we study a subset of the lighting design problem: the selection and alteration of the intensity of light sources. We present two different systems to design lighting on objects in 3D scenes. The user paints light intentions directly on the objects to alter the surface illumination. From these paint strokes, the systems find the light sources and alter their intensity to obtain as much as possible what the user wants. The novelty of our technique is that global illumination, transparent surfaces and subsurface scattering are all considered, and also that the camera is free to take any position. We also present strategies for selecting and altering the light sources. The first system uses an environment map as an intermediate representation of the environment surrounding the objects. The second system saves all the information of the environment for each vertex of each object.
10

Placement automatique de sondes d’irradiance

Polard-Perron, Joël 05 1900 (has links)
Nous proposons une méthode pour placer automatiquement des sondes dans une scène par minimisation d’une fonction d’erreur. Nous guidons les sondes vers les sites d’échantillonnage optimaux en appliquant la descente de gradient à une fonction d’erreur qui représente la similarité entre la structure en construction et un ensemble de référence. En utilisant la pondération inverse à la distance comme fonction interpolante, nous avons construit avec fiabilité des ensembles de sondes dans trois scènes. En comparant nos résultats avec ceux produits par un ensemble de sondes de référence placées sur une grille régulière, nous atteignons théoriquement notre objectif dans une des trois scènes, où nous obtenons des valeurs d’erreur inférieures à la référence avec beaucoup moins de sondes. Nous avons eu des succès partiels dans les autres scènes, selon le nombre d’échantillons utilisés. / Diffuse global illumination within a 3D scene can be approximated in real time using irradiance probes. Probe placement typically relies on significant human input, and final quality of the approximation is often left to the subjectivity of a lighting artist. As demand for realism in rendering increases, the need to enhance the quality of such approximations is greater. We propose a method to automatically place probes in a scene by minimizing an error function. We guide probes to optimal sampling locations by applying gradient descent to an error function that represents similarity between our interpolated results and reference irradiance values. Using weighted nearest neighbour interpolation, we were able to reliably construct probe sets with minimal input in three scenes. Comparing our results to those produced by a set of probes placed on a 3D grid, we were theoretically successful in one scene, in which we could obtain lower error values with fewer probes. We obtained partial success in the other scenes, depending on the number of samples used.

Page generated in 0.084 seconds