• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 16
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 97
  • 97
  • 26
  • 14
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Color-Based Surface Reflectance Separation for Scene Illumination Estimation and Rendering

Lahlou, Mouncef 01 April 2011 (has links)
Given the importance of color processing in computer vision and computer graphics, estimating and rendering illumination spectral reflectance of image scenes is important to advance the capability of a large class of applications such as scene reconstruction, rendering, surface segmentation, object recognition, and reflectance estimation. Consequently, this dissertation proposes effective methods for reflection components separation and rendering in single scene images. Based on the dichromatic reflectance model, a novel decomposition technique, named the Mean-Shift Decomposition (MSD) method, is introduced to separate the specular from diffuse reflectance components. This technique provides a direct access to surface shape information through diffuse shading pixel isolation. More importantly, this process does not require any local color segmentation process, which differs from the traditional methods that operate by aggregating color information along each image plane. Exploiting the merits of the MSD method, a scene illumination rendering technique is designed to estimate the relative contributing specular reflectance attributes of a scene image. The image feature subset targeted provides a direct access to the surface illumination information, while a newly introduced efficient rendering method reshapes the dynamic range distribution of the specular reflectance components over each image color channel. This image enhancement technique renders the scene illumination reflection effectively without altering the scene’s surface diffuse attributes contributing to realistic rendering effects. As an ancillary contribution, an effective color constancy algorithm based on the dichromatic reflectance model was also developed. This algorithm selects image highlights in order to extract the prominent surface reflectance that reproduces the exact illumination chromaticity. This evaluation is presented using a novel voting scheme technique based on histogram analysis. In each of the three main contributions, empirical evaluations were performed on synthetic and real-world image scenes taken from three different color image datasets. The experimental results show over 90% accuracy in illumination estimation contributing to near real world illumination rendering effects.
52

Image Restoration for Non-Traditional Camera Systems

January 2020 (has links)
abstract: Cameras have become commonplace with wide-ranging applications of phone photography, computer vision, and medical imaging. With a growing need to reduce size and costs while maintaining image quality, the need to look past traditional style of cameras is becoming more apparent. Several non-traditional cameras have shown to be promising options for size-constraint applications, and while they may offer several advantages, they also usually are limited by image quality degradation due to optical or a need to reconstruct a captured image. In this thesis, we take a look at three of these non-traditional cameras: a pinhole camera, a diffusion-mask lensless camera, and an under-display camera (UDC). For each of these cases, I present a feasible image restoration pipeline to correct for their particular limitations. For the pinhole camera, I present an early pipeline to allow for practical pinhole photography by reducing noise levels caused by low-light imaging, enhancing exposure levels, and sharpening the blur caused by the pinhole. For lensless cameras, we explore a neural network architecture that performs joint image reconstruction and point spread function (PSF) estimation to robustly recover images captured with multiple PSFs from different cameras. Using adversarial learning, this approach achieves improved reconstruction results that do not require explicit knowledge of the PSF at test-time and shows an added improvement in the reconstruction model’s ability to generalize to variations in the camera’s PSF. This allows lensless cameras to be utilized in a wider range of applications that require multiple cameras without the need to explicitly train a separate model for each new camera. For UDCs, we utilize a multi-stage approach to correct for low light transmission, blur, and haze. This pipeline uses a PyNET deep neural network architecture to perform a majority of the restoration, while additionally using a traditional optimization approach which is then fused in a learned manner in the second stage to improve high-frequency features. I show results from this novel fusion approach that is on-par with the state of the art. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2020
53

Digital Image Processing And Machine Learning Research: Digital Color Halftoning, Printed Image Artifact Detection And Quality Assessment, And Image Denoising.

Yi Yang (12481647) 29 April 2022 (has links)
<p>To begin with, we describe a project in which three screens for Cyan, Magenta, and Yellow colorants were designed jointly using the Direct Binary Search algorithm (DBS). The screen set generated by the algorithm can be used to halftone color images easily and quickly. The halftoning results demonstrate that by utilizing the screen sets, it is possible to obtain high-quality color halftone images while significantly reducing computational complexity.</p> <p>Our next research focuses on defect detection and quality assessment of printed images. We measure and analyze macro-uniformity, banding, and color plane misregistration. For these three defects, we designed different pipelines for them and developed a series of digital image processing and computer vision algorithms for the purpose of quantifying and evaluating these printed image defects. Additionally, we conduct a human psychophysical experiment to collect perceptual assessments and use machine learning approaches to predict image quality scores based on human vision.</p> <p>We study modern deep convolutional neural networks for image denoising and propose a network designed for AWGN image denoising. </p> <p>Our network removes the bias at each layer to achieve the benefits of scaling invariant network; additionally, it implements a mix loss function to boost performance. We train and evaluate our denoising results using PSNR, SSIM, and LPIPS, and demonstrate that our results achieve impressive performance on both objective and subjective IQA assessments.</p>
54

Effects of Emotional Words in Crisis Communication Response Messages on an Organization’s Trust, Perceived Credibility and Public’s Behavior Intent

Lovins, Jason H., 19 September 2017 (has links)
No description available.
55

Graph-based variational optimization and applications in computer vision / Optimisation variationnelle discrète et applications en vision par ordinateur

Couprie, Camille 10 October 2011 (has links)
De nombreuses applications en vision par ordinateur comme le filtrage, la segmentation d'images, et la stéréovision peuvent être formulées comme des problèmes d'optimisation. Récemment les méthodes discrètes, convexes, globalement optimales ont reçu beaucoup d'attention. La méthode des "graph cuts'", très utilisée en vision par ordinateur est basée sur la résolution d'un problème de flot maximum discret, mais les solutions souffrent d'un effet de blocs,notamment en segmentation d'images. Une nouvelle formulation basée sur le problème continu est introduite dans le premier chapitre et permet d'éviter cet effet. La méthode de point interieur employée permet d'optimiser le problème plus rapidement que les méthodes existantes, et la convergence est garantie. Dans le second chapitre, la formulation proposée est efficacement étendue à la restauration d'image. Grâce à une approche du à la contrainte et à un algorithme proximal parallèle, la méthode permet de restaurer (débruiter, déflouter, fusionner) des images rapidement et préserve un meilleur contraste qu'avec la méthode de variation totale classique. Le chapitre suivant met en évidence l'existence de liens entre les méthodes de segmentation "graph-cuts'", le "randomwalker'', et les plus courts chemins avec un algorithme de segmentation par ligne de partage des eaux (LPE). Ces liens ont inspiré un nouvel algorithme de segmentation multi-labels rapide produisant une ligne de partage des eaux unique, moins sensible aux fuites que la LPE classique. Nous avons nommé cet algorithme "LPE puissance''. L'expression de la LPE sous forme d'un problème d'optimisation a ouvert la voie à de nombreuses applications possibles au delà de la segmentation d'images, par exemple dans le dernier chapitre en filtrage pour l'optimisation d'un problème non convexe, en stéréovision, et en reconstruction rapide de surfaces lisses délimitant des objets à partir de nuages de points bruités / Many computer vision applications such as image filtering, segmentation and stereovision can be formulated as optimization problems. Recently discrete, convex, globally optimal methods have received a lot of attention. Many graph-based methods suffer from metrication artefacts, segmented contours are blocky in areas where contour information is lacking. In the first part of this work, we develop a discrete yet isotropic energy minimization formulation for the continuous maximum flow problem that prevents metrication errors. This new convex formulation leads us to a provably globally optimal solution. The employed interior point method can optimize the problem faster than the existing continuous methods. The energy formulation is then adapted and extended to multi-label problems, and shows improvements over existing methods. Fast parallel proximal optimization tools have been tested and adapted for the optimization of this problem. In the second part of this work, we introduce a framework that generalizes several state-of-the-art graph-based segmentation algorithms, namely graph cuts, random walker, shortest paths, and watershed. This generalization allowed us to exhibit a new case, for which we developed a globally optimal optimization method, named "Power watershed''. Our proposed power watershed algorithm computes a unique global solution to multi labeling problems, and is very fast. We further generalize and extend the framework to applications beyond image segmentation, for example image filtering optimizing an L0 norm energy, stereovision and fast and smooth surface reconstruction from a noisy cloud of 3D points
56

Aplicação de wavelets em inpainting digital / Wavelet transform in digital inpainting

Ignácio, Ubiratã Azevedo 26 February 2007 (has links)
Made available in DSpace on 2015-03-05T13:58:27Z (GMT). No. of bitstreams: 0 Previous issue date: 26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Inpainting Digital é uma técnica recente que permite completar a falta de informação em imagens, seja por falha ou por remoção intencional de alguma área ou objeto. Uma das atribuições importantes do inpainting digital é de que deve ser capaz de alterar uma imagem, de forma que não seja simples perceber que esta alteração foi feita; caracteriza uma modificação indetectável. Os métodos para determinar como esta falta de informação será preenchida variam desde a criação do primeiro modelo de inpainting digital. Contudo, sempre deve ser mantida uma coerência no preenchimento, que fará com que a região preenchida automaticamente aparente como parte da imagem verdadeira. As técnicas atuais tratam este preenchimento como uma propagação da estrutura da área que está ao redor da região a ser preenchida, trabalhando diretamente no domímio das cores, utilizando abordagens como Variação Total e Equações Diferenciais Parciais. Neste trabalho, é feito o uso de transformada Wavelet para a aplicação de inpainting digita / Digital Inpainting is a recent techinique that allows the filling of missing information in images. One important attribute of a digital inpainting technique is the ability of altering an image in such a way that it is not simple for the human observer to detect the modification, characterizing an undetectable modification. The strategies for filling missing parts vary since the first inpainting model, but one thing that remains is the fact that the filled area must be coherent with the original part of the image. Current techniques handle the filling as a structure propagation problem, working directly in the image color domain, and based on concepts like Total Variation or Partial Diferential Equations. In this work, we present a digital inpainting model that works exclusively in Wavelet domain,filling the target area with a texture synthesis mechanism using the properties of the Wavelet Transform
57

Étude d’algorithmes de restauration d’images sismiques par optimisation de forme non linéaire et application à la reconstruction sédimentaire. / Seismic images restoration using non linear optimization and application to the sedimentary reconstruction.

Gilardet, Mathieu 19 December 2013 (has links)
Nous présentons une nouvelle méthode pour la restauration d'images sismiques. Quand on l'observe, une image sismique est le résultat d'un système de dépôt initial qui a été transformé par un ensemble de déformations géologiques successives (flexions, glissement de la faille, etc) qui se sont produites sur une grande période de temps. L'objectif de la restauration sismique consiste à inverser les déformations pour fournir une image résultante qui représente le système de dépôt géologique tel qu'il était dans un état antérieur. Classiquement, ce procédé permet de tester la cohérence des hypothèses d'interprétations formulées par les géophysiciens sur les images initiales. Dans notre contribution, nous fournissons un outil qui permet de générer rapidement des images restaurées et qui aide donc les géophysiciens à reconnaître et identifier les caractéristiques géologiques qui peuvent être très fortement modifiées et donc difficilement identifiables dans l'image observée d'origine. Cette application permet alors d'assister ces géophysiciens pour la formulation d'hypothèses d'interprétation des images sismiques. L'approche que nous introduisons est basée sur un processus de minimisation qui exprime les déformations géologiques en termes de contraintes géométriques. Nous utilisons une approche itérative de Gauss-Newton qui converge rapidement pour résoudre le système. Dans une deuxième partie de notre travail nous montrons différents résultats obtenus dans des cas concrets afin d'illustrer le processus de restauration d'image sismique sur des données réelles et de montrer comment la version restaurée peut être utilisée dans un cadre d'interprétation géologique. / We present a new method for seismic image restoration. When observed, a seismic image is the result of an initial deposit system that has been transformed by a set of successive geological deformations (folding, fault slip, etc) that occurred over a large period of time. The goal of seismic restoration consists in inverting the deformations to provide a resulting image that depicts the geological deposit system as it was in a previous state. With our contribution, providing a tool that quickly generates restored images helps the geophysicists to recognize geological features that may be too strongly altered in the observed image. The proposed approach is based on a minimization process that expresses geological deformations in terms of geometrical constraints. We use a quickly-converging Gauss-Newton approach to solve the system. We provide results to illustrate the seismic image restoration process on real data and present how the restored version can be used in a geological interpretation framework.
58

Restauração de imagens de microscopia de força atômica com uso da regularização de Tikhonov via processamento em GPU / Image restoration from atomic force microscopy using the Tikhonov regularization via GPU processing

Augusto Garcia Almeida 04 March 2013 (has links)
A Restauração de Imagens é uma técnica que possui aplicações em várias áreas, por exemplo, medicina, biologia, eletrônica, e outras, onde um dos objetivos da restauração de imagens é melhorar o aspecto final de imagens de amostras que por algum motivo apresentam imperfeições ou borramentos. As imagens obtidas pelo Microscópio de Força Atômica apresentam borramentos causados pela interação de forças entre a ponteira do microscópio e a amostra em estudo. Além disso apresentam ruídos aditivos causados pelo ambiente. Neste trabalho é proposta uma forma de paralelização em GPU de um algoritmo de natureza serial que tem por fim a Restauração de Imagens de Microscopia de Força Atômica baseado na Regularização de Tikhonov. / Image Restoration is a technique which has applications in several areas, e.g., medicine, biology, electronics, and others, where one of the goals is to improve the final appearance of the images of samples, that have for some reason, imperfections or blurring. The images obtained by Atomic Force Microscope have blurring caused by the interaction forces between the tip of the microscope and the sample under study. Moreover exhibit additive noise caused by the environment. This thesis proposes a way to make a parallelization on a GPU of a serial algorithm of which is a Image Restoration of Images from Atomic Force Microscopy using Tikhonov Regularization.
59

SSIM-Inspired Quality Assessment, Compression, and Processing for Visual Communications

Rehman, Abdul January 2013 (has links)
Objective Image and Video Quality Assessment (I/VQA) measures predict image/video quality as perceived by human beings - the ultimate consumers of visual data. Existing research in the area is mainly limited to benchmarking and monitoring of visual data. The use of I/VQA measures in the design and optimization of image/video processing algorithms and systems is more desirable, challenging and fruitful but has not been well explored. Among the recently proposed objective I/VQA approaches, the structural similarity (SSIM) index and its variants have emerged as promising measures that show superior performance as compared to the widely used mean squared error (MSE) and are computationally simple compared with other state-of-the-art perceptual quality measures. In addition, SSIM has a number of desirable mathematical properties for optimization tasks. The goal of this research is to break the tradition of using MSE as the optimization criterion for image and video processing algorithms. We tackle several important problems in visual communication applications by exploiting SSIM-inspired design and optimization to achieve significantly better performance. Firstly, the original SSIM is a Full-Reference IQA (FR-IQA) measure that requires access to the original reference image, making it impractical in many visual communication applications. We propose a general purpose Reduced-Reference IQA (RR-IQA) method that can estimate SSIM with high accuracy with the help of a small number of RR features extracted from the original image. Furthermore, we introduce and demonstrate the novel idea of partially repairing an image using RR features. Secondly, image processing algorithms such as image de-noising and image super-resolution are required at various stages of visual communication systems, starting from image acquisition to image display at the receiver. We incorporate SSIM into the framework of sparse signal representation and non-local means methods and demonstrate improved performance in image de-noising and super-resolution. Thirdly, we incorporate SSIM into the framework of perceptual video compression. We propose an SSIM-based rate-distortion optimization scheme and an SSIM-inspired divisive optimization method that transforms the DCT domain frame residuals to a perceptually uniform space. Both approaches demonstrate the potential to largely improve the rate-distortion performance of state-of-the-art video codecs. Finally, in real-world visual communications, it is a common experience that end-users receive video with significantly time-varying quality due to the variations in video content/complexity, codec configuration, and network conditions. How human visual quality of experience (QoE) changes with such time-varying video quality is not yet well-understood. We propose a quality adaptation model that is asymmetrically tuned to increasing and decreasing quality. The model improves upon the direct SSIM approach in predicting subjective perceptual experience of time-varying video quality.
60

Higher Order Levelable Mrf Energy Minimization Via Graph Cuts

Karci, Mehmet Haydar 01 February 2008 (has links) (PDF)
A feature of minimizing images of a class of binary Markov random field energies is introduced and proved. Using this, the collection of minimizing images of levels of higher order, levelable MRF energies is shown to be a monotone collection. This implies that these images can be combined to give minimizing images of the MRF energy itself. Due to the recent developments, second and third order binary MRF energies of the mentioned class are known to be exactly minimized by maximum flow/minimum cut computations on appropriately constructed graphs. With the aid of these developments an exact and efficient algorithm to minimize levelable second and third order MRF energies, which is composed of a series of maximum flow/minimum cut computations, is proposed and applications of the proposed algorithm to image restoration are given.

Page generated in 0.1326 seconds