Spelling suggestions: "subject:"imagen por resonance magnética"" "subject:"cmagen por resonance magnética""
1 |
Reconstrucción de imágenes geológicas basadas en la teoría de compressed sensingCalderón Amor, Hernán Alberto January 2014 (has links)
Ingeniero Civil Eléctrico / En el ámbito de interpolación geoestadística, el principal problema para estimar variables regionalizadas es la baja cantidad de datos medidos. Este tipo de problemas están extremadamente indeterminados, es decir, presentan una mayor cantidad de grados de libertad que restricciones, lo que deriva en múltiples soluciones.
Este trabajo aborda el problema de interpolación de perfiles de permeabilidad desde un enfoque de reconstrucción de imágenes. En particular, el trabajo es motivado por el reciente desarrollo de la teoría RIPless de Compressed Sensing, herramienta que ha introducido un nuevo paradigma de adquisición de datos, permitiendo muestrear a tasas muy por debajo de las establecidas por las técnicas convencionales. El enfoque consiste en modelar las estructuras multicanal como imágenes que presentan una descomposición sparse en algún dominio transformado y utilizar esta información para reconstruir la imagen original a partir de un muestreo sub-crítico y no estructurado. Ésta es la principal diferencia con los métodos tradicionales, los cuales utilizan modelos estadísticos como información a priori para el proceso de estimación.
La principal contribución de este trabajo fue la contextualización del problema de interpolación espacial en el marco de Compressed Sensing, generando claras conexiones con los resultados teóricos de esta nueva herramienta. De este análisis, se formuló el problema de selección de base óptima, el cual indicó que bajo el esquema de medición aleatoria de pixeles, la DCT es la base que permite inducir un determinado error de reconstrucción con la menor cantidad de mediciones, superando incluso a las transformadas wavelet.
En la línea de los resultados obtenidos, este enfoque presenta prometedores desempeños, incluso en el régimen sub-crítico del 2% al 4% de datos medidos. En cuanto a los aspectos prácticos de procesamiento, la descomposición en distintos niveles de escala (bloques) para su reconstrucción y posterior promedio, mostró mejorías sustanciales en la estimación de las variables de permeabilidad. También se constató que, dada la naturaleza binaria de las imágenes estudiadas, una etapa de categorización genera importantes mejoras en los desempeños del método.
Finalmente, esta memoria abrió diversas ramas de estudio para trabajos futuros, dentro de los cuales destacan: implementación de otros algoritmos; estudio de técnicas de post-procesamiento más elaboradas; extender el análisis a diferentes estructuras o modelos geológicos; incorporación de información a priori en esquemas de reconstrucción; y uso conjunto de métodos convencionales y regularización sparse.
|
2 |
Evaluación del volumen de la vía aérea superior mediante tomografía computarizada de haz cónico en pacientes adultos atendidos en un centro de radiología maxilofacial de LimaValverde Bonilla, Katherine Larissa 12 April 2017 (has links)
Objetivo: Determinar el volumen de las vías aéreas superiores en pacientes adultos atendidos en un centro de radiología maxilofacial de Lima, Perú. Método: Se realizó un estudio transversal, descriptivo, se recolectaron 203 tomografías computarizadas de haz cónico (TCHC) de adultos de 18-75 años de edad de la base de datos de una Clínica de radiología maxilofacial. Las tomografías fueron analizadas a través del programa Planmeca Romexis®. Se usó una medición con planos validados por Guijarro R y col, 2013 en sentido sagital, transversal y coronal para la medición de la vía aérea nasofaringe y orofarínge. Los volúmenes medidos fueron de la nasofaringe, orofarínge y volumen total. Para evaluarlos según género y edad, se realizaron las pruebas de U de Mann-Whitney, Kruskall Wallis respectivamente. Resultados: El 52% fue de género masculino, el promedio de edad fue 29,7 años [18-75 años]. Los volúmenes promedio para la nasofaringe, orofarínge y volumen total para el género masculino fue de 8,19 cm3, 16,96 cm3, 25,15 cm3 y para el género femenino fue de 7,23 cm3, 13,99 cm3 y 21,21 cm3 respectivamente. Los varones tuvieron 3,94 cm3 más con respecto al volumen total de las mujeres p<0.001 Conclusiones: Los volúmenes totales de la vía aérea de la población estudiada fue de 25,15 cm3 para los varones y 21,21 cm3 las mujeres. / Objective: The aim of this study was determinate the volume of upper airway in adults treated at a maxillofacial radiology center in Lima,Perú. Methods: A cross-secional descriptive study, 203 cone beam computed thomography (CBCT) of adult patients aged 18-75 years were collected from the database of a maxillofacial radiology center. Thomographys were visualized throught the Planmeca Romexis® program. A mesurement with validated plans was used. A measurement with plans validated by Guijarro R et al, 2013 was used. In the sagittal, transverse and coronal sense for the measurement of the nasopharyngeal and oropharyngeal airway. The volumes measured were nasopharynx, oropharyngeal and total volume. To evaluate them according to gender and age, the Mann-Whitney U tests were performed, Kruskall Wallis respectively. Results: 52% were male, mean age was 29.7 years [18-75 years]. The mean volumes for the nasopharynx, oropharynx and total volume for the male gender were 8.19 cm3, 16.96 cm3, 25.15 cm3 and for the female gender it was 7.23 cm3, 13.99 cm3 and 21, 21 cm3 respectively. The males had 3.94 cm3 more with respect to the total volume of the women p <0.001. Conclusions: The total airway volumes of the study population were 25.15 cm3 for males and 21.21 cm3 for females. / Tesis
|
3 |
Radiomics for diagnosis and assessing brain diseases: an approach based on texture analysis on magnetic resonance imagingOrtiz Ramón, Rafael 08 April 2019 (has links)
[ES] En los últimos años, los investigadores han intentado explotar la información de las imágenes médicas a través de la evaluación de parámetros cuantitativos para ayudar a los clínicos con el diagnóstico de enfermedades. Esta práctica ha sido bautizada como radiomics. El análisis de texturas proporciona una gran variedad de parámetros que permiten cuantificar la heterogeneidad característica de diferentes tejidos, especialmente cuando se obtienen de imagen por resonancia magnética (IRM). Basándonos en esto, decidimos estudiar las posibilidades de los parámetros texturales extraídos de IRM para caracterizar varios trastornos cerebrales. El potencial de las texturas se analizó con enfoques de aprendizaje automático, usando diferentes clasificadores y métodos de selección de características para hallar el modelo óptimo para cada tarea específica. En esta tesis, la metodología radiomics se usó para realizar cuatro proyectos independientes.
En el primer proyecto, estudiamos la diferenciación entre glioblastomas multiformes (GBMs) y metástasis cerebrales (MCs) en IRM convencional. Estos tipos de tumores cerebrales pueden confundirse al diagnosticarse, ya que presentan un perfil radiológico similar y los datos clínicos pueden no ser concluyentes. Con el fin de evitar procedimientos exhaustivos e invasivos, estudiamos el poder discriminatorio de texturas 2D extraídas de imágenes de referencia T1 filtradas y sin filtrar. Los resultados sugieren que los parámetros texturales proporcionan información sobre la heterogeneidad de los GBMs y las MCs que puede servir para distinguir con precisión ambas lesiones cuando se utiliza un enfoque de aprendizaje automático adecuado.
En el segundo proyecto, analizamos la clasificación de las MCs según su origen primario en IRM de referencia. En un porcentaje de pacientes, las MCs son diagnosticadas como la primera manifestación de un tumor primario desconocido. Con el fin de detectar el tumor primario de una forma no invasiva y más rápida, examinamos la capacidad del análisis de texturas 2D y 3D para diferenciar las MCs derivadas de los tumores primarios más propensos a metastatizar (cáncer de pulmón, cáncer de mama y melanoma) en imágenes T1. Los resultados mostraron que se logra una alta precisión al usar un conjunto reducido de texturas 3D para diferenciar MCs de cáncer de pulmón de MCs de cáncer de mama y melanoma.
En el tercer proyecto, evaluamos las propiedades del hipocampo en IRM para identificar las diferentes etapas de la enfermedad de Alzheimer (EA). Los criterios actuales para diagnosticar la EA requieren la presencia de déficits cognitivos severos. Con la idea de establecer nuevos biomarcadores para detectar la EA en sus primeras etapas, evaluamos un conjunto de texturas 2D y 3D extraídas de IRM del hipocampo de pacientes con EA avanzada, deterioro cognitivo leve y normalidad cognitiva. Muchos parámetros de textura 3D resultaron ser estadísticamente significativos para diferenciar entre pacientes con EA y sujetos de las otras dos poblaciones. Al combinar estos parámetros con técnicas de aprendizaje automático, se obtuvo una alta precisión.
En el cuarto proyecto, intentamos caracterizar los patrones de heterogeneidad del ictus cerebral isquémico en IRM estructural. En IRM cerebral de individuos de edad avanzada, algunos procesos patológicos presentan características similares, como las lesiones por ictus y las hiperintensidades de la sustancia blanca (HSBs). Dado que los ictus afectan también al tejido adyacente, decidimos estudiar la viabilidad de texturas 3D extraídas de las HSBs, la sustancia blanca no afectada y las estructuras subcorticales para diferenciar sujetos afectados por ictus lacunares o corticales visibles en IRM convencional (imágenes T1, T2 y FLAIR) de sujetos sin ictus. Las texturas no sirvieron para diferenciar ictus corticales y lacunares, pero se lograron resultados prometedores para discernir pacientes qu / [CA] En els últims anys, els investigadors han intentat explotar la informació de les imatges mèdiques a través de l'avaluació de nombrosos paràmetres quantitatius per ajudar els clínics amb el diagnòstic i la valoració de malalties. Aquesta pràctica ha sigut batejada com radiomics,. L'anàlisi de textures proporciona una gran varietat de paràmetres que permeten quantificar l'heterogeneïtat característica de diferents teixits, especialment quan s'obtenen a partir d'imatge per ressonància magnètica (IRM). Basant-nos en aquests fets, vam decidir estudiar les possibilitats dels paràmetres texturals extrets d'IRM per caracteritzar diversos trastorns cerebrals. El potencial de les textures es va analitzar amb mètodes d'aprenentatge automàtic, usant diferents classificadors i mètodes de selecció de característiques per trobar el model òptim per a cada tasca específica. En aquesta tesi, la metodologia radiomics es va emprar per realitzar quatre projectes independents.
En el primer projecte, vam estudiar la diferenciació entre glioblastomes multiformes (GBMs) i metàstasis cerebrals (MCs) en IRM convencional. Aquests tipus de tumors cerebrals poden confondre's al diagnosticar-se ja que presenten un perfil radiològic similar i les dades clíniques poden no ser concloents. Per tal d'evitar procediments exhaustius i invasius, vam estudiar el poder discriminatori de textures 2D extretes d'imatges de referència T1 filtrades i sense filtrar. Els resultats suggereixen que els paràmetres texturals proporcionen informació sobre l'heterogeneïtat dels GBMs i les MCs que pot servir per distingir amb precisió ambdues lesions quan s'utilitza una aproximació d'aprenentatge automàtic adequada.
En el segon projecte, vam analitzar la classificació de MCs segons el seu origen primari en IRM de referència. En un percentatge de pacients, les MCs són diagnosticades com la primera manifestació d'un tumor primari desconegut. Per tal de detectar el tumor primari d'una forma no invasiva i més ràpida, vam examinar la capacitat de l'anàlisi de textura 2D i 3D per diferenciar les MCs derivades dels tumors primaris més propensos a metastatitzar (càncer de pulmó, càncer de mama i melanoma) en imatges T1. Els resultats van mostrar que s'aconsegueix una alta precisió quan s'utilitza un conjunt reduït de textures 3D per diferenciar les MCs de càncer de pulmó de les MCs de càncer de mama i melanoma.
En el tercer projecte, vam avaluar les propietats de l'hipocamp en la IRM per identificar les diferents etapes de la malaltia d'Alzheimer (MA). Els criteris actuals per diagnosticar la MA requereixen la presència de dèficits cognitius severs. Amb la idea d'establir nous biomarcadors per detectar la MA en les seues primeres etapes, vam avaluar un conjunt de textures 2D i 3D extretes d'IRM de l'hipocamp de pacients amb MA avançada, deteriorament cognitiu lleu i normalitat cognitiva. Molts paràmetres de textura 3D van resultar ser estadísticament significatius per diferenciar entre pacients amb MA i individus de les altres dues poblacions. En combinar aquests paràmetres amb tècniques d'aprenentatge automàtic, es va obtenir una alta precisió.
En el quart projecte, vam intentar caracteritzar els patrons d'heterogeneïtat de l'ictus cerebral isquèmic en la IRM estructural. En la IRM cerebral d'individus d'edat avançada, alguns processos patològics presenten característiques similars, com les lesions per ictus i les hiperintensitats de la substància blanca (HSBs). Atès que els ictus tenen efecte també en teixit adjacent, vam decidir estudiar la viabilitat de textures 3D extretes de les HSBs, la substància blanca no afectada i les estructures subcorticals per diferenciar individus afectats per ictus llacunars o corticals visibles en IRM convencional (imatges T1, T2 i FLAIR) d'individus sense ictus. Les textures no foren útils per diferenciar ictus corticals i llacunars, però es van obtenir resultats prometedors per disce / [EN] Over the last years, researchers have attempted to exploit the information provided by medical images through the evaluation of numerous imaging quantitative parameters in order to help clinicians with the diagnosis and assessment of many lesions and diseases. This practice has been recently named as radiomics. Texture analysis supply a wide range of features that allow quantifying the distinctive heterogeneity of different tissues, especially when obtained from magnetic resonance imaging (MRI). With this in mind, we decided to study the possibilities of texture features from MRI in order to characterize several disorders that affect the human brain. The potential of texture features was analyzed with various machine learning approaches, involving different classifiers and feature selection methods so as to find the optimal model to accomplish each specific task. In this thesis, the radiomics methodology was used to perform four independent projects.
In the first project, we studied the differentiation between glioblastomas (GBMs) and brain metastases (BMs) in conventional MRI. Sometimes these types of brain tumors can be misdiagnosed since they may present a similar radiological profile and the clinical data may be inconclusive. With the aim of avoiding exhaustive and invasive procedures, we studied the discriminatory power of a large amount of 2D texture features extracted from baseline original and filtered T1-weighted images. The results suggest that 2D texture features provide some heterogeneity information of GBMs and BMs that can help in their accurate discernment when using the proper machine learning approach.
In the second project, we analyzed the classification of BMs by their primary site of origin in baseline MRI. A percentage of patients are diagnosed with BM as the first manifestation of an unknown primary tumor. In order to detect the primary tumor in a faster non-invasive way, we examined the capability of 2D and 3D texture analysis to differentiate BMs derived from the most common primary tumors (lung cancer, breast cancer and melanoma) in T1-weighted images. The results showed that high accuracy was achieved when using a reduced set of 3D descriptors to differentiate lung cancer BMs from breast cancer and melanoma BMs.
In the third project, we evaluated the hippocampus MRI profile of Alzheimer's disease (AD) patients to identify the different stages of the disease. The current criteria for diagnosing AD require the presence of relevant cognitive deficits. With the purpose of establishing new biomarkers to detect AD in its early stages, we evaluated a set of 2D and 3D texture features extracted from MRI scans of the hippocampus of patients with advanced AD, early mild cognitive impairment and cognitive normality. Many 3D texture parameters resulted to be statistically significant to differentiate between AD patients and subjects from the other two populations. When combining these 3D parameters with machine learning techniques, high accuracy was obtained.
In the fourth project, we attempted to characterize the heterogeneity patterns of ischemic stroke in structural MRI. In brain MRI of older individuals, some pathological processes present similar imaging characteristics, like in the case of stroke lesions and white matter hyperintensities (WMH) of diverse natures. Given that stroke effects are present not only in the affected region, but also in unaffected tissue, we investigated the feasibility of 3D texture features from WMH, normal-appearing white matter and subcortical structures to differentiate individuals who had a lacunar or cortical stroke visible on conventional brain MRI (T1-weighted, T2-weighted and FLAIR images) from subjects who did not. Texture features were not useful to differentiate between post-acute cortical and lacunar strokes, but promising results were achieved for discerning between patients presenting an old stroke and normal-ageing patients who never had a stroke. / Ortiz Ramón, R. (2019). Radiomics for diagnosis and assessing brain diseases: an approach based on texture analysis on magnetic resonance imaging [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/119118
|
4 |
Estudio Anatómico, Ecográfico, por Tomografía Computerizada y de Imagen por Resonancia Magnética de la Articulación Temporomandibular del GatoArredondo Ramos, Jorge 29 January 2009 (has links)
Las patologías que afectan la masticación y la oclusión dental son comunes en el gato y siempre requieren de una valoración clínica de la articulación temporomandibular (ATM), apoyada siempre en técnicas de diagnóstico por imagen. La ATM de los gatos representa un reto técnico y diagnóstico para el radiologo debido a la complejidad de la anatomía del cráneo de los carnívoros y al solapamiento de las estructuras en las imagenes obtenidas mediante radiología convencional. Por lo anterior, el empleo de técnicas de imagen tomográficas como lo son la ecografía (USG), la tomografía computerizada (TC) y la imagen por resonancia magnética (IRM), proporcionan al clínico mejores alternativas para el diagnóstico de los problemas relacionados con la ATM. La interpretación de las imagenes obtenidas mediante estas técnicas de diagnóstico por imagen requieren de un conocimiento profundo de la anatomía por planos y seccional de la ATM del gato y de las estructuras anatómicas relacio nadas a ella. / Pathologies affecting mastication and dental occlusion are very common in the cat and always requieres assesment of the temporomandibular joint (TMJ) sustented in diagnostic imaging techniques. The TMJ of the cat represents a technical challenge to the radiographer due to the complex anatomy of the carnivore´s skull and to the overposition of structures in conventional radiology. Thus, the use of other diagnostic modalitys such as ultrasonography (USG), computed tomography (CT) and magnetic resonance imaging (MRI) could be a better alternative to diagnose TMJ related pathologies. A deep knowledge of the tridimensional and sectional anatomy of the TMJ and related structures is a prerequisite for a correct interpretation of the images obtained by those diagnostic techniques.
|
5 |
Estudio de la conectividad funcional en cerebros de animales de experimentación a partir del análisis de imágenes de resonancia magnética mediante técnicas de clasificación no supervisadaMoya Payá, Javier 26 December 2012 (has links)
Moya Payá, J. (2013). Estudio de la conectividad funcional en cerebros de animales de experimentación a partir del análisis de imágenes de resonancia magnética mediante técnicas de clasificación no supervisada [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18238
|
6 |
Applications of Deep Leaning on Cardiac MRI: Design Approaches for a Computer Aided DiagnosisPérez Pelegrí, Manuel 27 April 2023 (has links)
[ES] Las enfermedades cardiovasculares son una de las causas más predominantes de muerte y comorbilidad en los países desarrollados, por ello se han realizado grandes inversiones en las últimas décadas para producir herramientas de diagnóstico y aplicaciones de tratamiento de enfermedades cardíacas de alta calidad. Una de las mejores herramientas de diagnóstico para caracterizar el corazón ha sido la imagen por resonancia magnética (IRM) gracias a sus capacidades de alta resolución tanto en la dimensión espacial como temporal, lo que permite generar imágenes dinámicas del corazón para un diagnóstico preciso. Las dimensiones del ventrículo izquierdo y la fracción de eyección derivada de ellos son los predictores más potentes de morbilidad y mortalidad cardiaca y su cuantificación tiene connotaciones importantes para el manejo y tratamiento de los pacientes. De esta forma, la IRM cardiaca es la técnica de imagen más exacta para la valoración del ventrículo izquierdo. Para obtener un diagnóstico preciso y rápido, se necesita un cálculo fiable de biomarcadores basados en imágenes a través de software de procesamiento de imágenes. Hoy en día la mayoría de las herramientas empleadas se basan en sistemas semiautomáticos de Diagnóstico Asistido por Computador (CAD) que requieren que el experto clínico interactúe con él, consumiendo un tiempo valioso de los profesionales cuyo objetivo debería ser únicamente interpretar los resultados. Un cambio de paradigma está comenzando a entrar en el sector médico donde los sistemas CAD completamente automáticos no requieren ningún tipo de interacción con el usuario. Estos sistemas están diseñados para calcular los biomarcadores necesarios para un diagnóstico correcto sin afectar el flujo de trabajo natural del médico y pueden iniciar sus cálculos en el momento en que se guarda una imagen en el sistema de archivo informático del hospital.
Los sistemas CAD automáticos, aunque se consideran uno de los grandes avances en el mundo de la radiología, son extremadamente difíciles de desarrollar y dependen de tecnologías basadas en inteligencia artificial (IA) para alcanzar estándares médicos. En este contexto, el aprendizaje profundo (DL) ha surgido en la última década como la tecnología más exitosa para abordar este problema. Más específicamente, las redes neuronales convolucionales (CNN) han sido una de las técnicas más exitosas y estudiadas para el análisis de imágenes, incluidas las imágenes médicas. En este trabajo describimos las principales aplicaciones de CNN para sistemas CAD completamente automáticos para ayudar en la rutina de diagnóstico clínico mediante resonancia magnética cardíaca. El trabajo cubre los puntos principales a tener en cuenta para desarrollar tales sistemas y presenta diferentes resultados de alto impacto dentro del uso de CNN para resonancia magnética cardíaca, separados en tres proyectos diferentes que cubren su aplicación en la rutina clínica de diagnóstico, cubriendo los problemas de la segmentación, estimación automática de biomarcadores con explicabilidad y la detección de eventos.
El trabajo completo presentado describe enfoques novedosos y de alto impacto para aplicar CNN al análisis de resonancia magnética cardíaca. El trabajo proporciona varios hallazgos clave, permitiendo varias formas de integración de esta reciente y creciente tecnología en sistemas CAD completamente automáticos que pueden producir resultados altamente precisos, rápidos y confiables. Los resultados descritos mejorarán e impactarán positivamente el flujo de trabajo de los expertos clínicos en un futuro próximo. / [CA] Les malalties cardiovasculars són una de les causes de mort i comorbiditat més predominants als països desenvolupats, s'han fet grans inversions en les últimes dècades per tal de produir eines de diagnòstic d'alta qualitat i aplicacions de tractament de malalties cardíaques. Una de les tècniques millor provades per caracteritzar el cor ha estat la imatge per ressonància magnètica (IRM), gràcies a les seves capacitats d'alta resolució tant en dimensions espacials com temporals, que permeten generar imatges dinàmiques del cor per a un diagnòstic precís. Les dimensions del ventricle esquerre i la fracció d'ejecció que se'n deriva són els predictors més potents de morbiditat i mortalitat cardíaca i la seva quantificació té connotacions importants per al maneig i tractament dels pacients. D'aquesta manera, la IRM cardíaca és la tècnica d'imatge més exacta per a la valoració del ventricle esquerre. Per obtenir un diagnòstic precís i ràpid, es necessita un càlcul fiable de biomarcadors basat en imatges mitjançant un programa de processament d'imatges. Actualment, la majoria de les ferramentes emprades es basen en sistemes semiautomàtics de Diagnòstic Assistit per ordinador (CAD) que requereixen que l'expert clínic interaccioni amb ell, consumint un temps valuós dels professionals, l'objectiu dels quals només hauria de ser la interpretació dels resultats. S'està començant a introduir un canvi de paradigma al sector mèdic on els sistemes CAD totalment automàtics no requereixen cap tipus d'interacció amb l'usuari. Aquests sistemes estan dissenyats per calcular els biomarcadors necessaris per a un diagnòstic correcte sense afectar el flux de treball natural del metge i poden iniciar els seus càlculs en el moment en què es deixa la imatge dins del sistema d'arxius hospitalari.
Els sistemes CAD automàtics, tot i ser molt considerats com un dels propers grans avanços en el món de la radiologia, són extremadament difícils de desenvolupar i depenen de les tecnologies d'Intel·ligència Artificial (IA) per assolir els estàndards mèdics. En aquest context, l'aprenentatge profund (DL) ha sorgit durant l'última dècada com la tecnologia amb més èxit per abordar aquest problema. Més concretament, les xarxes neuronals convolucionals (CNN) han estat una de les tècniques més utilitzades i estudiades per a l'anàlisi d'imatges, inclosa la imatge mèdica. En aquest treball es descriuen les principals aplicacions de CNN per a sistemes CAD totalment automàtics per ajudar en la rutina de diagnòstic clínic mitjançant ressonància magnètica cardíaca. El treball recull els principals punts a tenir en compte per desenvolupar aquest tipus de sistemes i presenta diferents resultats d'impacte en l'ús de CNN a la ressonància magnètica cardíaca, tots separats en tres projectes principals diferents, cobrint els problemes de la segmentació, estimació automàtica de *biomarcadores amb *explicabilidad i la detecció d'esdeveniments.
El treball complet presentat descriu enfocaments nous i potents per aplicar CNN a l'anàlisi de ressonància magnètica cardíaca. El treball proporciona diversos descobriments clau, que permeten la integració de diverses maneres d'aquesta tecnologia nova però en constant creixement en sistemes CAD totalment automàtics que podrien produir resultats altament precisos, ràpids i fiables. Els resultats descrits milloraran i afectaran considerablement el flux de treball dels experts clínics en un futur proper. / [EN] Cardiovascular diseases are one of the most predominant causes of death and comorbidity in developed countries, as such heavy investments have been done in recent decades in order to produce high quality diagnosis tools and treatment applications for cardiac diseases. One of the best proven tools to characterize the heart has been magnetic resonance imaging (MRI), thanks to its high-resolution capabilities in both spatial and temporal dimensions, allowing to generate dynamic imaging of the heart that enable accurate diagnosis. The dimensions of the left ventricle and the ejection fraction derived from them are the most powerful predictors of cardiac morbidity and mortality, and their quantification has important connotations for the management and treatment of patients. Thus, cardiac MRI is the most accurate imaging technique for left ventricular assessment. In order to get an accurate and fast diagnosis, reliable image-based biomarker computation through image processing software is needed. Nowadays most of the employed tools rely in semi-automatic Computer-Aided Diagnosis (CAD) systems that require the clinical expert to interact with it, consuming valuable time from the professionals whose aim should only be at interpreting results. A paradigm shift is starting to get into the medical sector where fully automatic CAD systems do not require any kind of user interaction. These systems are designed to compute any required biomarkers for a correct diagnosis without impacting the physician natural workflow and can start their computations the moment an image is saved within a hospital archive system.
Automatic CAD systems, although being highly regarded as one of next big advances in the radiology world, are extremely difficult to develop and rely on Artificial Intelligence (AI) technologies in order to reach medical standards. In this context, Deep learning (DL) has emerged in the past decade as the most successful technology to address this problem. More specifically, convolutional neural networks (CNN) have been one of the most successful and studied techniques for image analysis, including medical imaging. In this work we describe the main applications of CNN for fully automatic CAD systems to help in the clinical diagnostics routine by means of cardiac MRI. The work covers the main points to take into account in order to develop such systems and presents different impactful results within the use of CNN to cardiac MRI, all separated in three different main projects covering the segmentation, automatic biomarker estimation with explainability and event detection problems.
The full work presented describes novel and powerful approaches to apply CNN to cardiac MRI analysis. The work provides several key findings, enabling the integration in several ways of this novel but non-stop growing technology into fully automatic CAD systems that could produce highly accurate, fast and reliable results. The results described will greatly improve and impact the workflow of the clinical experts in the near future. / Pérez Pelegrí, M. (2023). Applications of Deep Leaning on Cardiac MRI: Design Approaches for a Computer Aided Diagnosis [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/192988
|
Page generated in 0.1537 seconds