• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 10
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 88
  • 32
  • 24
  • 21
  • 19
  • 17
  • 16
  • 16
  • 16
  • 15
  • 15
  • 15
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

CD8+ T Cell and NK Responses to a Novel Dengue Epitope: A Possible Role for KIR3DL1 in Dengue Pathogenesis: A Dissertation

Townsley, Elizabeth 03 April 2014 (has links)
Variation in the sequence of T cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T cell responses during second heterologous infections contributing to pathology following DENV infection. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein, NS126-34. We predicted higher frequencies of NS126-34-specific CD8+ T cells in PBMC from individuals undergoing secondary, rather than primary, DENV infection due to the expansion of memory CD8+T cells. We generated a tetramer against this epitope (B57-NS126-34TET) and used it to assess the frequencies and phenotype of antigen-specific T cells in samples from a clinical cohort of children with acute DENV infection established in Bangkok, Thailand. High tetramer-positive T cell frequencies during acute infection were seen in only 1 of 9 subjects with secondary infection. B57-NS126-34-specific, other DENV epitope-specific CD8+ T cells, as well as total CD8+ T cells, expressed an activated phenotype (CD69+ and/or CD38+) during acute infection. In contrast, expression of CD71 was largely limited to DENV-specific CD8+ T cells. In vitro stimulation of CD8+ T cell lines, generated against three different DENV epitopes, indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides with substantial upregulation of CD71 detected to peptides which also elicited strong functional responses. CD71 may therefore represent a useful marker of antigenspecific T cell activation. During the course of our analysis we found substantial binding of B57-NS126-34 TET to CD8- cells. We demonstrated that the B57-NS126-34 TET bound KIR3DL1, an inhibitory receptor on natural killer (NK) cells. NK sensitive target cells presenting the NS126-34 peptide in the context of HLA-B57 were able to dampen functional responses of only KIR3DL1+ NK cells. Analysis of the activation of an NK enriched population in our Thai cohort revealed peak activation during the critical time phase in patients with severe dengue illness, dengue hemorrhagic fever, compared to people with mild illness. Our data identified CD71 as biologically useful marker to study DENV-specific CD8+ T cell responses and highlighted the role of viral peptides in modulating NK cell activation through KIR-MHC class I interactions during DENV infection.
82

Characterization of Envelope-Specific Antibody Response Elicited by HIV-1 Vaccines: A Dissertation

Chen, Yuxin 06 January 2015 (has links)
Despite 30 years of intensive research,an effective human immunodeficiency virus (HIV) vaccine still remains elusive. The desirable immune response capable of providing protection against HIV acquisition is still not clear. The accumulating evidence learned from a recent vaccine efficacy correlate study not only confirmed the importance of antibody responses, but also highlighted potential protective functions of antibodies with a broad repertoire of HIV-1 epitope specificities and a wide range of different antiviral mechanisms. This necessitates a deep understanding of the complexity and diversity of antibody responses elicited by HIV-1 vaccines. My dissertation characterizes antibody response profiles of HIV-1 Env antibodies elicited by several novel immunogens or different immunization regimens, in terms of magnitude, persistence, epitope specificity, binding affinity, and biological function. First, to overcome the challenge of studying polyclonal sera without established assays, we expanded a novel platform to isolate Env-specific Rabbit mAbs (RmAb) elicited by DNA prime-protein boost immunization. These RmAbs revealed diverse epitope specificity and cross-reactivity against multiple gp120 antigens from more than one subtype, and several had potent and broad neutralizing activities against sensitive Tier 1 viruses. Further, structural analysis of two V3 mAbs demonstrated that a slight shift of the V3 epitope might have a dramatic impact on their neutralization activity. All of these observations provide a useful tool to study the induction of a desired type of antibody by different immunogens or different immunization regimens. Since heavily glycosylated HIV Env protein is a critical component of an HIV vaccine, we wanted to determine the impact of the HIV Env-associated glycan shield on antibody responses. We were able to produce Env proteins with a selective and homogeneous pattern of N-glycosylation using a glycoengineered yeast cell line. Antigenicity of these novel Env proteins was examined by well-characterized human mAbs. Immunogenicity studies showed that they were immunogenic and elicited gp120- specific antibody responses. More significantly, sera elicited by glycan-modified gp120 protein immunogens revealed better neutralizing activities and increased diversity of epitopes compared to sera elicited by traditional gp120 produced in Chinese Hamster Ovary (CHO) cells. Further, we examined the impact of the delivery order of DNA and protein immunization on antibody responses. We found that DNA prime-protein boost induced a comparable level of Env-specific binding Abs at the peak immunogenicity point to codelivery of DNA. However, antibody responses from DNA prime-protein boost had high avidity and diverse specificities, which improved potency and breadth of neutralizing Abs against Tier 1 viruses. Our data indicate that DNA vaccine priming of the immune system is essential for generation of high-quality antibodies. Additionally, we determined the relative immunogenicity of gp120 and gp160 Env in the context of DNA prime-protein boost vaccination to induce high-quality antibody responses. Immunized sera from gp120 DNA primed animals, but not those primed with gp160 DNA, presented with distinct antibody repertoire specificities, a high magnitude of CD4 binding site-directed binding capabilities as well as neutralizing activities. We confirmed the importance of using the gp120 Env form at the DNA priming phase, which directly determined the quality of antibody response.
83

The Epithelial Transmembrane Protein PERP Is Required for Inflammatory Responses to S. typhimurium Infection: A Dissertation

Hallstrom, Kelly N. 28 October 2015 (has links)
Salmonella enterica subtype Typhimurium (S. Typhimurium) is one of many non-typhoidal Salmonella enterica strains responsible for over one million cases of salmonellosis in the United States each year. These Salmonella strains are also a leading cause of diarrheal disease in developing countries. Nontyphoidal salmonellosis induces gastrointestinal distress that is characterized histopathologically by an influx of polymorphonuclear leukocytes (PMNs), the non-specific effects of which lead to tissue damage and contribute to diarrhea. Prior studies from our lab have demonstrated that the type III secreted bacterial effector SipA is a key regulator of PMN influx during S. Typhimurium infection and that its activity requires processing by caspase-3. Although we established caspase-3 activity is required for the activation of inflammatory pathways during S. Typhimurium infection, the mechanisms by which caspase-3 is activated remain incompletely understood. Most challenging is the fact that SipA is responsible for activating caspase-3, which begs the question of how SipA can activate an enzyme it requires for its own activity. In the present study, we describe our findings that the eukaryotic tetraspanning membrane protein PERP is required for the S. Typhimuriuminduced influx of PMNs. We further show that S. Typhimurium infection induces PERP accumulation at the apical surface of polarized colonic epithelial cells, and that this accumulation requires SipA. Strikingly, PERP accumulation occurs in the absence of caspase-3 processing of SipA, which is the first time we have shown SipA mediates a cellular event without first requiring caspase-3 processing. Previous work demonstrates that PERP mediates the activation of caspase-3, and we find that PERP is required for Salmonella-induced caspase-3 activation. Our combined data support a model in which SipA triggers caspase-3 activation via its cellular modulation of PERP. Since SipA can set this pathway in motion without being cleaved by caspase-3, we propose that PERP-mediated caspase-3 activation is required for the activation of SipA, and thus is a key step in the inflammatory response to S. Typhimurium infection. Our findings further our understanding of how SipA induces inflammation during S. Typhimurium infection, and also provide additional insight into how type III secreted effectors manipulate host cells.
84

Development, Expansion and Role of Myeloid-Derived Suppressor Cells in Post-Sepsis Immune Suppression

Alkhateeb, Tuqa 01 August 2020 (has links)
Myeloid-derived suppressor cells (MDSCs) numbers increase significantly in sepsis and are associated with high mortality rates. These myeloid cell precursors promote immunosuppression, especially in the late (post sepsis) stage. However, the mechanisms that underlie MDSC expansion and programming are not completely understood. To investigate these mechanisms, we used a cecal-ligation and puncture (CLP) mouse model of polymicrobial sepsis that progresses from an early/acute proinflammatory phase to a late/chronic immunosuppressive phase. Previous studies in our laboratory showed that microRNA (miR)-21 and miR-181b elevate levels of the transcription factor nuclear factor 1 (NFI-A) that promotes MDSC expansion. We report here that miR-21 and miR-181b regulate NFI-A expression via a post-transcriptional regulatory mechanism by recruiting RNA-binding proteins HuR and Ago1 to stabilize NFI-A mRNA, thus increasing its protein levels. Studies in our laboratory also showed that inflammatory mediator S100A9 accumulates in the nucleus in Gr1+CD11b+ myeloid precursors in the later phases of sepsis and is necessary for their expansion and programming into immunosuppressive MDSCs. We demonstrate here that nuclear S100A9 associates with specific transcription factors that activate miR-21 and miR-181b expressions. In our final manuscript, we uncover another layer of the mechanisms of MDSC expansion and programming. We found that long non-coding RNA (lncRNA) Hotairm1 binds to and recruits S100A9 to the nucleus to program Gr1+CD11b+ myeloid precursors into MDSCs in the later phases of sepsis. Together, our results reveal three regulatory layers involving NFI-A, S100A9 and Hotairm1 in the pathway leading to MDSCs development in sepsis and suggest that therapeutically targeting these molecular switches might improve sepsis survival.
85

Sénescence et longévité : des mécanismes aux processus évolutifs : étude chez les oiseaux et les mammifères / Senescence and longevity : from physiological mechanisms to evolutionary processes : studies in birds and mammals

Guerreiro, Romain 14 December 2012 (has links)
Il existe dans le règne animal une diversité incroyable de durées de vie allant de quelques jours pour les petits vers gastrotriches à plusieurs centaines d’années pour certains bivalves ou tortues terrestres. Cette étonnante diversité a depuis longtemps questionné les chercheurs en biologie. L’intérêt croissant pour le phénomène de vieillissement, notamment dû à l’augmentation de l’espérance de vie chez l’Homme, a conduit les chercheurs à essayer de comprendre les processus qui déterminent les patrons de longévité et de vieillissement. D’une part, les études biomédicales et biogérontologiques ont contribué à décrire nombres de mécanismes physiologiques et cellulaires à l’origine du vieillissement. Parmi ces mécanismes, le stress oxydant a été identifié comme jouant un rôle majeur, à travers l’accumulation au cours de la vie des dégâts générés par la production de radicaux libres lors d’activités métaboliques aérobies. D’autre part, le développement de théories évolutives du vieillissement a contribué à comprendre l’origine ultime du vieillissement et l’évolution de la diversité des traits d’histoire de vie. Cependant, ces approches, bien que complémentaires, sont longtemps restées imperméables et les travaux intégrant les mécanismes physiologiques tels que le stress oxydant dans une perspective évolutive n’ont connu que de récents développements. Dans cette thèse, nous avons étudié comment des mécanismes tels que le stress oxydant et ses coûts associés lors d’évènements comme la reproduction ou la réponse immunitaire pouvaient jouer un rôle dans l’évolution des patrons de vieillissement chez les oiseaux et les mammifères (i) en étudiant le rôle des antioxydants comme ressources clés dans les compromis adaptatifs entre reproduction et survie en fonction de l’âge, (ii) en étudiant les conséquences à long terme de l’environnement périnatal, (iii) en étudiant le lien entre réponse inflammatoire et patrons de vieillissement et de longévité contrastée entre oiseaux et mammifères, (iv) en s’intéressant plus particulièrement aux mécanismes de régulation immunitaire, soulignant leur rôle crucial pour la fitness des hôtes, et notamment tard dans la vie. Nos résultats soulignent l’importance des contraintes physiologiques liées à la limitation en ressources clés (antioxydants) ou aux dégâts engendrés lors d’activités coûteuses et destructrices et sur les patrons de vieillissements à l’échelle intra et inter-spécifique. / There is an incredible diversity of lifespan in the animal kingdom ranging from a few days for small gastrotrichs worms to several hundred of years for some bivalves or tortoises. This amazing diversity has long questioned biology researchers. The growing interest in the phenomenon of aging, mainly due to the increase in life expectancy in humans, has questioned researchers on processes that determine patterns of longevity and ageing. On the one hand, biomedical and biogerontological studies helped describe numerous cellular and physiological mechanisms related to aging. Among these mechanisms, oxidative stress has been identified as playing a major role, through life-time accumulation of damage generated by production of metabolic free radicals. On the other hand, the development of evolutionary theories of aging has contributed to understanding ultimate origins of ageing and of the diversity of life history traits. However, these approaches, although complementary, have long remained separated and works that integrate physiological mechanisms such as oxidative stress in an evolutionary perspective have known only recent developments. In this thesis, we studied how mechanisms such as oxidative stress and its associated costs produced during reproduction or immune response could play a role in the evolution of patterns of ageing in birds and mammals by (i) studying the role of antioxidants as key resources involved in adaptive trade-offs between reproduction and survival through age, (ii) studying the long-term effects of the early environment, (iii) studying the relationship between inflammatory response and contrasted patterns of ageing and longevity between birds and mammals, (iv) focusing particularly on immune regulatory mechanisms, emphasizing their crucial role in fitness of hosts, especially late in life. Overall, our results highlight the importance of physiological constraints in terms of key resources limitation (i.e. antioxidants) or damage caused during costly and destructive activities and on intra-and inter-specific patterns of ageing.
86

Caspase-8 and RIP Kinases Regulate Bacteria-Induced Innate Immune Responses and Cell Death: A Dissertation

Weng, Dan 07 July 2014 (has links)
Yersinia pestis (Y. pestis), as the causative agent of plague, has caused deaths estimated to more than 200 million people in three historical plague pandemics, including the infamous Black Death in medieval Europe. Although infection with Yersinia pestis can mostly be limited by antibiotics and only 2000-5000 cases are observed worldwide each year, this bacterium is still a concern for bioterrorism and recognized as a category A select agent by the Centers for Disease Control and Prevention (CDC). The investigation into the host-pathogen interactions during Y. pestis infection is important to advance and broaden our knowledge about plague pathogenesis for the development of better vaccines and treatments. Y. pestis is an expert at evading innate immune surveillance through multiple strategies, several mediated by its type three secretion system (T3SS). It is known that the bacterium induces rapid and robust cell death in host macrophages and dendritic cells. Although the T3SS effector YopJ has been determined to be the factor inducing cytotoxicity, the specific host cellular pathways which are targeted by YopJ and responsible for cell death remain poorly defined. This thesis research has established the critical roles of caspase-8 and RIP kinases in Y. pestis-induced macrophage cell death. Y. pestis-induced cytotoxicity is completely inhibited in RIP1-/- or RIP3-/-caspase-8-/- macrophages or by specific chemical inhibitors. Strikingly, this work also indicates that macrophages deficient in either RIP1, or caspase-8 and RIP3, have significantly reduced infection-induced production of IL-1β, IL-18, TNFα and IL-6 cytokines; impaired activation of NF-κB signaling pathway and greatly compromised caspase-1 processing; all of which are critical for innate immune responses and contribute to fight against pathogen infection. Y. pestis infection causes severe and often rapid fatal disease before the development of adaptive immunity to the V bacterium, thus the innate immune responses are critical to control Y. pestis infection. Our group has previously established the important roles of key molecules of the innate immune system: TLR4, MyD88, NLRP12, NLRP3, IL-18 and IL-1β, in host responses against Y. pestis and attenuated strains. Yersinia has proven to be a good model for evaluating the innate immune responses during bacterial infection. Using this model, the role of caspase-8 and RIP3 in counteracting bacterial infection has been determined in this thesis work. Mice deficient in caspase-8 and RIP3 are very susceptible to Y. pestis infection and display reduced levels of pro-inflammatory cytokines in spleen and serum, and decreased myeloid cell death. Thus, both in vitro and in vivo results indicate that caspase-8 and RIP kinases are key regulators of macrophage cell death, NF-κB and caspase-1 activation in Yersinia infection. This thesis work defines novel roles for caspase-8 and RIP kinases as the central components in innate immune responses against Y. pestis infection, and provides further insights to the host-pathogen interaction during bacterial challenge.
87

Twist1 and Etv5 are part of a transcription factor network defining T helper cell identity

Pham, Duy 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / CD4 T helper cells control immunity to pathogens and the development of inflammatory disease by acquiring the ability to secrete effector cytokines. Cytokine responsiveness is a critical component of the ability of cells to respond to the extracellular milieu by activating Signal Transducer and Activator of Transcription factors that induce the expression of other transcription factors important for cytokine production. STAT4 is a critical regulator of Th1 differentiation and inflammatory disease that attenuates the gene-repressing activity of Dnmt3a. In the absence of STAT4, genetic loss of Dnmt3a results in de-repression of a subset of Th1 genes, and a partial increase in expression that is sufficient to observe a modest recovery of STAT4-dependent inflammatory disease. STAT4 also induces expression of the transcription factors Twist1 and Etv5. We demonstrate that Twist1 negatively regulates Th1 cell differentiation through several mechanisms including physical interaction with Runx3 and impairing STAT4 activation. Following induction by STAT3-activating cytokines including IL-6, Twist1 represses Th17 and Tfh differentiation by directly binding to, and suppressing expression of, the Il6ra locus, subsequently reducing STAT3 activation. In contrast, Etv5 contributes only modestly to Th1 development but promotes Th differentiation by directly activating cytokine production in Th9 and Th17 cells, and Bcl6 expression in Tfh cells. Thus, the transcription factors Twist1 and Etv5 provide unique regulation of T helper cell identity, ultimately impacting the development of cell-mediated and humoral immunity.
88

Mechanisms of Th2 Immunity in Peanut Allergic Sensitization

Chu, Derek K. 15 October 2014 (has links)
<p>Food allergies are immune system-driven diseases that lead to reproducible adverse reactions which can be fatal. These severe systemic reactions are primary mediated by immunoglobulin E (IgE) that is derived from B cells which have been activated by T helper type 2 (Th2) cells. While much work has advanced the clinical and pharmacological management of patients with allergic diseases, much remains to be elucidated about how individuals initially acquire allergy. This Thesis details a mechanism linking initial gastrointestinal exposure to peanut (PN) allergen, to the generation of Th2 cells: PN allergen activates epithelial cell secretion of interleukin (IL)-33 and eosinophil degranulation of eosinophil peroxidase, which causes CD103+ dendritic cell (DC) activation and migration to mesenteric lymph nodes where DC OX40L engages naïve T cells to secrete IL-4 in an autocrine/paracrine manner to promote and consolidate Th2 cell differentiation. These events are followed by B cell activation and PN-specific IgE production, which sensitizes mast cells to be hypersensitive to PN re-exposure by causing immediate allergic reactions including anaphylaxis. This is later followed by eosinophilic inflammation that is partially mediated by innate lymphoid cells. As food allergy also serves as a unique model to better understand mechanisms of adaptive immunity, especially Th2 immunobiology, both basic science and clinical implications are discussed in this Thesis. Major themes include Th2 and disease heterogeneity, identification of ‘the original source of IL-4’, an unprecedented <em>in vivo </em>requirement for eosinophils in priming adaptive immune responses, and the need to weigh basic science findings against the human disease <em>in natura </em>litmus test. Looking forward, many questions remain to be answered in the field of food allergy research, but the findings of this Thesis may be one step towards the prevention, management or cure of a disease with growing public concern, potentially fatal consequences, and an unmet need in understanding its pathogenesis.</p> / Doctor of Philosophy (Medical Science)

Page generated in 0.0353 seconds