• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 11
  • 11
  • 9
  • 7
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Problemas inversos associados a equações diferenciais impulsivas / Inverse problems associated with impulsive differential equations

Fukushima, Patrícia Kyoe 07 February 2019 (has links)
As equações diferenciais impulsivas (EDIs) modelam fenômenos que são contínuos por partes, isto é, que evoluem continuamente mas em certos momentos sofrem mudanças abruptas (impulsos) consideradas instantâneas quando comparadas à duração total do processo. Surgem nas mais diversas áreas das ciências, como na modelagem de concentração de medicamentos no corpo humano e no impacto de propaganda nas vendas de uma empresa. O problema direto associado a uma EDI com instantes de impulsos pré-fixados consiste em, fornecidos a equação diferencial, a condição inicial, os momentos de impulso e os saltos, determinar a solução do problema. Por outro lado, as incógnitas dos problemas inversos associados são os saltos e/ou os momentos de impulso. Em geral, os problemas inversos não podem ser resolvidos diretamente por meio de técnicas convencionais. A abordagem funcional é uma alternativa baseada na minimização de um funcional de erro que confronta dados do fenômeno real e do modelo matemático. O mínimo global deste funcional corresponde à solução do problema inverso. O objetivo principal desta dissertação é investigar os problemas inversos de identificação dos parâmetros saltos e momentos de impulso. Buscamos descrever uma técnica que permita tratar de problemas inversos associados às EDIs de forma bem geral, que não utilize informações específicas da aplicação além das medidas no tempo inicial e final do processo. Para isso, desenvolvemos um programa computacional composto por uma função para solução numérica do problema direto usando o método de Runge-Kutta de quarta ordem, função esta que é chamada diversas vezes para cada resolução do problema direto com diferentes valores para as incógnitas; e pelo método de otimização Simulated Annealing que altera sistematicamente os valores das incógnitas. Os resultados mostram que resolver os problemas inversos que surgem das EDIs não é uma tarefa simples, que a técnica estudada é promissora e que pode ser aperfeiçoada / Impulsive differential equations (IDEs) model piecewise continuous phenomena, that is, that evolve continuously but at certain moments suffer abrupt changes (impulses) considered instantaneous when compared to the total duration of the process. They arise in several areas of science, such as the modeling of drug concentration in the human body and the impact of advertising on a companys sales. The direct problem associated with an IDE with impulses at fixed times consists of determining the solution to the problem, provided the differential equation, the initial condition, the moments of impulse and the jumps. On the other hand, the unknowns of the associated inverse problems are the jumps and/or the moments of impulse. In general, the inverse problems cannot be solved directly by conventional techniques. The functional approach is an alternative based on the minimization of an error functional that confronts data of the real phenomenon and the mathematical model. The global minimum of this functional corresponds to the solution of the inverse problem. The main objective of this dissertation is to investigate the inverse problems of jumps and moments of impulse parameters identification. We have attempted to describe a technique that allows treating of the inverse problems associated with IDEs in a general way, which does not use particular information of the application besides the measurements in the initial and final time of the process. For this, we developed a computer program composed by a function to solve the direct problem numerically using the fourth-order Runge-Kutta method, which is called several times for each resolution of the direct problem with different values for the unknowns; and by the Simulated Annealing optimization method which changes the values of the unknowns systematically. The results show that solving the inverse problems that arise from IDEs is not a simple task and that the technique studied is promising and can be improved
2

Impulsive Differential Equations with Applications to Infectious Diseases

Miron, Rachelle 17 April 2014 (has links)
Impulsive differential equations are useful for modelling certain biological events. We present three biological applications showing the use of impulsive differential equations in real-world problems. We also look at the effects of stability on a reduced two-dimensional impulsive HIV system. The first application is a system describing HIV induction-maintenance therapy, which shows how the solution to an impulsive system is used in order to find biological results (adherence, etc). A second application is an HIV system describing the interaction between T-cells, virus and drugs. Stability of the system is determined for a fixed drug level in three specific regions: low, intermediate and high drug levels. Numerical simulations show the effects of varying drug levels on the stability of a system by including an impulse. We reduce these two models to a two-dimensional impulsive model. We show analytically the existence and uniqueness of T-periodic solutions, and show how stability changes when varying the immune response rate, the impulses and a certain nonlinear infection term. The third application shows how seasonal changes can be incorporated into an impulsive differential system of Rift Valley Fever, and looks at how stability may differ when impulses are included. The analysis of impulsive differential systems is crucial in developing more realistic mathematical models for infectious diseases.
3

Impulsive Differential Equations with Applications to Infectious Diseases

Miron, Rachelle January 2014 (has links)
Impulsive differential equations are useful for modelling certain biological events. We present three biological applications showing the use of impulsive differential equations in real-world problems. We also look at the effects of stability on a reduced two-dimensional impulsive HIV system. The first application is a system describing HIV induction-maintenance therapy, which shows how the solution to an impulsive system is used in order to find biological results (adherence, etc). A second application is an HIV system describing the interaction between T-cells, virus and drugs. Stability of the system is determined for a fixed drug level in three specific regions: low, intermediate and high drug levels. Numerical simulations show the effects of varying drug levels on the stability of a system by including an impulse. We reduce these two models to a two-dimensional impulsive model. We show analytically the existence and uniqueness of T-periodic solutions, and show how stability changes when varying the immune response rate, the impulses and a certain nonlinear infection term. The third application shows how seasonal changes can be incorporated into an impulsive differential system of Rift Valley Fever, and looks at how stability may differ when impulses are included. The analysis of impulsive differential systems is crucial in developing more realistic mathematical models for infectious diseases.
4

The Effects of Adherence to Antiretroviral Therapy for HIV-1 Infection

McKenzie, Lauren Clara Browning 25 May 2021 (has links)
The emergence of drug resistance is a serious threat to the long-term virologic success and durability of HIV-1 therapy. Adherence has been shown to be a major determinant of drug resistance; however, each pharmacologic class of antiretroviral drugs has a unique adherence–resistance relationship. We develop an immunological model of the HIV-1 infected human immune system that integrates the unique mechanisms of action of reverse transcriptase and protease inhibiting drugs. A system of impulsive differential equations is used to examine the drug kinetics within CD4⁺ T cells. Stability analysis was preformed to determine the long-term dynamics of the model. Using the endpoints of an impulsive periodic orbit in the drug levels, the maximal length of a drug holiday while avoiding drug resistance is theoretically determined; the minimum number of doses that must be subsequently taken to return to pre-interruption drug levels is also established. Heterogeneity in inter-individual differences on drug-holiday length is explored using sensitivity analysis based on Latin Hypercube Sampling and Partial Rank Correlation Coefficient analysis. Extremely short drug holidays are acceptable, as long as they are followed by a period of strict adherence. Numerical simulations demonstrate that if the drug holiday exceeds these recommendations, the cost in virologic rebound is unacceptably high. These theoretical predictions are in line with clinical results and may also help form the basis of future clinical trials.
5

Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas / Averaging method for retarded functional differential equations with impulses by generalized ordinary differential equations

Godoy, Jaqueline Bezerra 24 August 2009 (has links)
Neste trabalho, nós consideramos o seguinte problema de valor inicial para uma equação diferencial funcional retardada com impulsos { \'x PONTO\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFERENTE\' \'t IND. k\', \'DELTA\' x(\'t IND. k\') = \'varepsilon\' \' I IND. k\' (x ( \'t IND.k\')), k = 0, 1, 2, ... \'x IND. t IND.0\' = \' phi\', onde f está definida em um aberto \' OMEGA\' de R x \' G POT. -\' ([- r, 0], \' R POT. n\') e assume valores em \'R POT. n\', \' \'varepsilon\' \'G POT. - ([ - r, 0], \'R POT.n\'), r .0, onde \' G POT -\' ([ - r, 0], \' R POT. n\') denota o espaço das funções de [ - r, 0] em \' R POT. n\' que estão regradas e contínuas à esquerda. Além disso, \' t IND.0 < \' t IND. 1\'< ... \'t IND. k\' < ... são momentos pré determinados de impulsos tais que \'lim SOBRE k SETA + \' INFINITO\' \'t IND. k = + \' INFINITO\' e \'DELTA\'x (\' t IND.k\') = x ( \'t POT. + IND > k) - x (\'t IND. k). Os operadores de impulso \' I IND. k\', k = 0, 1, ... são funções contínuas de \'R POT. n\' em \' R POT. n\'. Consideramos, também, que para cada x \'varepsilon\' \' G POT. -\' ([- r, \' INFINITO\'), \'R POT. n\'), t \'SETA\' f (t, \'x IND. t\') é uma função localmente Lebesgue integrável e sua integral indefinida satisfaz uma condição do tipo Carathéodory. Além disso, f é Lipschitziana na segunda variável. Definimos \' f IND. 0\' ( \'phi\') = \' lim SOBRE T \' SETA\' \' INFINITO\' \'1 SUP. T \' INT. SUP. T INF. \' T IND.0\' f (t, \' PSI\') dt e \' I IND. 0(x) = \' lim SOBRE T \'SETA\' \' INFINITO\' \' 1 SUP. T\' \' SIGMA\' IND. 0 < ou = \' t IND. i\' < T onde \' psi\' \'varepsilon\' \' G POT. -\' ([ - r, 0], \' R POT. n\', e consideremos a seguinte equação diferencial funcioonal autônoma \" média\" y PONTO = \' varepsilon\' [ \' f IND. 0\' (\' y IND. t\' + \' I IND> 0\' (y (t))], \'y IND. t IND. 0 = \' phi\'. Então provamos que, sob certas condições, a solução x(t) de (1) se aproxima da solução y(t) de (2) em tempo assintoticamente grande / In this present work, we condider the following initial value problem for a retarded functional differential equation with impulses { \'x POINT\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFFERENT\' \'t IND. k\', \'DELTA\' x(\'t IND. k\') = \'varepsilon\' \' I IND. k\' (x ( \'t IND.k\')), k = 0, 1, 2, ... \'x IND. t IND.0\' = \' phi\', where f está defined in a open set \' OMEGA\' de R x \' G POT. -\' ([- r, 0], \' R POT. n\'), r >0, and takes values in \'R POT. n\', \' \'varepsilon\' \'G POT. - ([ - r, 0], \'R POT.n\'), r .0, where \' G POT -\' ([ - r, 0], \' R POT. n\') denotes the space of regulated functions from [ - r, 0] to \' R POT. n\' which are left continuous. Furthermore, \' t IND.0 < \' t IND. 1\'< ... \'t IND. k\' < ... are pre-assigned moments of impulse effects such that \'lim ON k ARROW + \' THE INFINITE\' \'t IND. k = + \' THE INFINITE\' e \'DELTA\'x (\' t IND.k\') = x ( \'t POT. + IND>k) - x (\'t IND. k). The impulse operators \' I IND. k\', k = 0, 1, ... are continuous mappings from \'R POT. n\' to \' R POT. n\'. For each x \'varepsilon\' \' G POT. -\' ([- r, \' THE INFINITE\'), \'R POT. n\'), t \'ARROW\' f (t, \'x IND. t\') is locally Lebesgue integrable and its indefinite integral satisfies a Carathéodory. Moreover, f é Lipschitzian with respect to the second variable. We define \' f IND. 0\' ( \'phi\') = \' lim ON T \' ARROW\' \' THE INFINITE\' \'1 SUP. T \' INT. SUP. T INF. \' T IND.0\' f (t, \' PSI\') dt and \' I IND. 0(x) = \' lim ON T \'ARROW\' \' THE INFINITE\' \' 1 SUP. T\' \' SIGMA\' IND. 0 < or = \' t IND. i\' < T where \' psi\' \'varepsilon\' \' G POT. -\' ([ - r, 0], \' R POT. n\', and consider the \"averaged\" autonomous functional differential equation \'y PONTO = \' varepsilon\' [ \' f IND. 0\' (\' y IND. t\' + \' I IND> 0\' (y (t))], \'y IND. t IND. 0 = \' phi\'. Then we prove that, under certain conditions, the solution x(t) of (1) in aproximates the solution y(t) de (2) in an asymptotically large time interval
6

A equação de Black-Scholes com ação impulsiva / The Black-Scholes equation with impulse action

Bonotto, Everaldo de Mello 13 June 2008 (has links)
Impulsos são perturbações abruptas que ocorrem em curto espaço de tempo e podem ser consideradas instantâneas. E os mercados financeiros estão sujeitos a choques bruscos como mudanças de governos, quebra de empresas, entre outros. Assim, é natural considerarmos a ação de tais eventos na precificação de ativos financeiros. Nosso objetivo neste trabalho é obtermos uma formulação para a equação diferencial parcial de Black-Scholes com ação impulsiva de modo que os impulsos representem estes choques. Utilizaremos a teoria de integração não-absoluta em espaço de funções para obtenção desta formulação / Impulses describe the evolution of systems where the continuous development of a process is interrupted by abrupt changes of state. Financial markets are subject to extreme events or shocks as government changes, companies colapse, etc. Thus it seems natural to consider the action of these events in the valuation of derivative securities. The aim of this work is to obtain a formulation for the Black-Scholes equation with impulse action where the impulses can represent these shocks. We use the non-absolute integration theory in functional spaces to obtain such formulation
7

Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas / Averaging method for retarded functional differential equations with impulses by generalized ordinary differential equations

Jaqueline Bezerra Godoy 24 August 2009 (has links)
Neste trabalho, nós consideramos o seguinte problema de valor inicial para uma equação diferencial funcional retardada com impulsos { \'x PONTO\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFERENTE\' \'t IND. k\', \'DELTA\' x(\'t IND. k\') = \'varepsilon\' \' I IND. k\' (x ( \'t IND.k\')), k = 0, 1, 2, ... \'x IND. t IND.0\' = \' phi\', onde f está definida em um aberto \' OMEGA\' de R x \' G POT. -\' ([- r, 0], \' R POT. n\') e assume valores em \'R POT. n\', \' \'varepsilon\' \'G POT. - ([ - r, 0], \'R POT.n\'), r .0, onde \' G POT -\' ([ - r, 0], \' R POT. n\') denota o espaço das funções de [ - r, 0] em \' R POT. n\' que estão regradas e contínuas à esquerda. Além disso, \' t IND.0 < \' t IND. 1\'< ... \'t IND. k\' < ... são momentos pré determinados de impulsos tais que \'lim SOBRE k SETA + \' INFINITO\' \'t IND. k = + \' INFINITO\' e \'DELTA\'x (\' t IND.k\') = x ( \'t POT. + IND > k) - x (\'t IND. k). Os operadores de impulso \' I IND. k\', k = 0, 1, ... são funções contínuas de \'R POT. n\' em \' R POT. n\'. Consideramos, também, que para cada x \'varepsilon\' \' G POT. -\' ([- r, \' INFINITO\'), \'R POT. n\'), t \'SETA\' f (t, \'x IND. t\') é uma função localmente Lebesgue integrável e sua integral indefinida satisfaz uma condição do tipo Carathéodory. Além disso, f é Lipschitziana na segunda variável. Definimos \' f IND. 0\' ( \'phi\') = \' lim SOBRE T \' SETA\' \' INFINITO\' \'1 SUP. T \' INT. SUP. T INF. \' T IND.0\' f (t, \' PSI\') dt e \' I IND. 0(x) = \' lim SOBRE T \'SETA\' \' INFINITO\' \' 1 SUP. T\' \' SIGMA\' IND. 0 < ou = \' t IND. i\' < T onde \' psi\' \'varepsilon\' \' G POT. -\' ([ - r, 0], \' R POT. n\', e consideremos a seguinte equação diferencial funcioonal autônoma \" média\" y PONTO = \' varepsilon\' [ \' f IND. 0\' (\' y IND. t\' + \' I IND> 0\' (y (t))], \'y IND. t IND. 0 = \' phi\'. Então provamos que, sob certas condições, a solução x(t) de (1) se aproxima da solução y(t) de (2) em tempo assintoticamente grande / In this present work, we condider the following initial value problem for a retarded functional differential equation with impulses { \'x POINT\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFFERENT\' \'t IND. k\', \'DELTA\' x(\'t IND. k\') = \'varepsilon\' \' I IND. k\' (x ( \'t IND.k\')), k = 0, 1, 2, ... \'x IND. t IND.0\' = \' phi\', where f está defined in a open set \' OMEGA\' de R x \' G POT. -\' ([- r, 0], \' R POT. n\'), r >0, and takes values in \'R POT. n\', \' \'varepsilon\' \'G POT. - ([ - r, 0], \'R POT.n\'), r .0, where \' G POT -\' ([ - r, 0], \' R POT. n\') denotes the space of regulated functions from [ - r, 0] to \' R POT. n\' which are left continuous. Furthermore, \' t IND.0 < \' t IND. 1\'< ... \'t IND. k\' < ... are pre-assigned moments of impulse effects such that \'lim ON k ARROW + \' THE INFINITE\' \'t IND. k = + \' THE INFINITE\' e \'DELTA\'x (\' t IND.k\') = x ( \'t POT. + IND>k) - x (\'t IND. k). The impulse operators \' I IND. k\', k = 0, 1, ... are continuous mappings from \'R POT. n\' to \' R POT. n\'. For each x \'varepsilon\' \' G POT. -\' ([- r, \' THE INFINITE\'), \'R POT. n\'), t \'ARROW\' f (t, \'x IND. t\') is locally Lebesgue integrable and its indefinite integral satisfies a Carathéodory. Moreover, f é Lipschitzian with respect to the second variable. We define \' f IND. 0\' ( \'phi\') = \' lim ON T \' ARROW\' \' THE INFINITE\' \'1 SUP. T \' INT. SUP. T INF. \' T IND.0\' f (t, \' PSI\') dt and \' I IND. 0(x) = \' lim ON T \'ARROW\' \' THE INFINITE\' \' 1 SUP. T\' \' SIGMA\' IND. 0 < or = \' t IND. i\' < T where \' psi\' \'varepsilon\' \' G POT. -\' ([ - r, 0], \' R POT. n\', and consider the \"averaged\" autonomous functional differential equation \'y PONTO = \' varepsilon\' [ \' f IND. 0\' (\' y IND. t\' + \' I IND> 0\' (y (t))], \'y IND. t IND. 0 = \' phi\'. Then we prove that, under certain conditions, the solution x(t) of (1) in aproximates the solution y(t) de (2) in an asymptotically large time interval
8

A equação de Black-Scholes com ação impulsiva / The Black-Scholes equation with impulse action

Everaldo de Mello Bonotto 13 June 2008 (has links)
Impulsos são perturbações abruptas que ocorrem em curto espaço de tempo e podem ser consideradas instantâneas. E os mercados financeiros estão sujeitos a choques bruscos como mudanças de governos, quebra de empresas, entre outros. Assim, é natural considerarmos a ação de tais eventos na precificação de ativos financeiros. Nosso objetivo neste trabalho é obtermos uma formulação para a equação diferencial parcial de Black-Scholes com ação impulsiva de modo que os impulsos representem estes choques. Utilizaremos a teoria de integração não-absoluta em espaço de funções para obtenção desta formulação / Impulses describe the evolution of systems where the continuous development of a process is interrupted by abrupt changes of state. Financial markets are subject to extreme events or shocks as government changes, companies colapse, etc. Thus it seems natural to consider the action of these events in the valuation of derivative securities. The aim of this work is to obtain a formulation for the Black-Scholes equation with impulse action where the impulses can represent these shocks. We use the non-absolute integration theory in functional spaces to obtain such formulation
9

Teoria de semigrupos e aplicações a equações impulsivas com retardamento dependendo do estado / Semigroup theory and applications to impulsive differential equation with state-dependent delay

União, Gabriel Gonçalves 17 April 2006 (has links)
Neste trabalho estudaremos a existência de soluções fracas para uma classe de equações diferenciais funcionais impulsivas com retardamento dependendo do estado modeladas na forma \'x POT. PRIME\'(t) = Ax(t) + f(t;\' x IND. p(t, xt)), t \'PERTENCE A\'I = [0,a], \'x IND. 0\' =\\varphi \'PERTENCE A\' B, \'DELTA\' \'x(t IND. i) = \'I IND.i\'i(\'x IND.i\'); i = 1, ...n, onde A é o gerador infinitesimal de um \'C IND. 0\'-semigrupo compacto de operadores lineares limitados (\'T\'(t))t \'. OU =\'0 definido em um espaço de Banach X; as fun»ções \'x IND. s\' : (- \'INFIINITO\', 0] \'SETA\' X, \'x IND. s\' ( teta\') = x(s + \'teta\'), estão em um espaço de fase B descrito axiomaticamente; f : I X B \'seta\' X, \'rô\' : I X B \'SETA\' ( - \'INFINITO\', a], \'I IND. i\' : B \'SETA\'X, i=1, ...n , são funções apropriadas; 0 < \'t IND.1\' <... < \'t IND. n\' < a são n¶umeros pré-fixados e o símbolo \'DELTA\'\'ksi\'(t) = \'Ksi\'(\'t POT. + ) - \'ksi\'( \'t POT. -). / In this work we stablish the existence of mild solutions for an impulsive abstract functional differential equation with state-dependent delay described in the form \'x POT. PRIME\'(t) = Ax(t) + f(t;\' x IND. p(t, xt)), t \'BELONGS\'I = [0,a], \'x IND. 0\' =\\varphi \'IS CONTAINED\' B, \'DELTA\' \'x(t IND. i) = \'I IND.i\'i(\'x IND.i\'); i = 1, ...n, where A is the infinitesimal generator of a compact \'C IND. 0\'-semigroup of bounded linear operators (\'T\'(t))t \'. OU =\'0 defined on a Banach space X; the functions \'x IND. s\': ( - INFINito, 0] \'SETA X, \'x IND. s\'(\'teta\') , belongs to some space B described axiomatically; f : I X B \'seta\' X, \'rô\' : I X B \'SETA\' ( - \'INFINITO\', a], \'I IND. i\' : B \'SETA\'X, i=1, ...n , são funções apropriadas; 0 < \'t IND.1\' <... < \'t IND. n\' < a são n¶umeros pré-fixados e o símbolo \'DELTA\'\'ksi\'(t) = \'Ksi\'(\'t POT. + ) - \'ksi\'( \'t POT. -).
10

Controlabilidade e observabilidade em equações diferenciais ordinárias generalizadas e aplicações / Controllability and observability in generalized ordinary differential equations and applications

Silva, Fernanda Andrade da 30 October 2017 (has links)
Neste trabalho, introduzimos os conceitos de controlabilidade e de observabilidade para equações diferenciais ordinárias generalizadas, apresentamos resultados inéditos sobre condições suficientes e necessárias para controlabilidade e para observabilidade para estas equações e também apresentaremos uma aplicação. Utilizando teoremas de correspondência entre equações diferenciais ordinárias generalizadas e outras equações diferenciais, traduzimos os resultados obtidos para os casos particulares de controlabilidade e observabilidade para equações diferenciais em medida e equações diferencias com impulsos. O fato de trabalharmos no ambiente das equações diferenciais ordinárias generalizadas permitiu que os resultados obtidos pudessem envolver funções com muitas descontinuidades e muito oscilantes, ou seja, de variação ilimitada. Os resultados novos apresentados aqui estão contidos no artigo [21] que se encontra em fase final de redação e será submetido à publicação em breve. / In this work, we introduce concepts of controllability and observability for generalized ordinary differential equations, we present new results on necessary and sufficient conditions for controllability and observability for these equations and we also present an application. Using theorems of correspondence between generalized ordinary differential equations and other differential equations, we translate the results obtained for the particular cases of controllability and observability for measure differential equations and differential equations with impulses. The fact that we work in the framework of generalized ordinary differential equations allows us to obtain results where the functions involved can have many discontinuities and be highly oscillating, that is, of unbounded variation. The new results presented here are contained in the preprint [21] which is under final revision and will soon be submitted for publication.

Page generated in 0.1076 seconds