• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 2
  • 2
  • Tagged with
  • 25
  • 25
  • 25
  • 10
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Application of in situ chemical oxidation technology to remediate chlorinated-solvent contaminated groundwater

Wen, Yi-ting 22 August 2010 (has links)
Groundwater at many existing and former industrial sites and disposal areas is contaminated by halogenated organic compounds that were released into the environment. The chlorinated solvent trichloroethylene (TCE) is one of the most ubiquitous of these compounds. In situ chemical oxidation (ISCO) has been successfully used for the removal of TCE. The objective of this study was to apply the ISCO technology to remediate TCE-contaminated groundwater. In this study, potassium permanganate (KMnO4) was used as the oxidant during the ISCO process. The study consisted bench-scale and pilot-scale experiments. In the laboratory experiments, the major controlling factors included oxidant concentrations, effects of soil oxidant demand (SOD) on oxidation efficiency, and addition of dibasic sodium phosphate on the inhibition of production of manganese dioxide (MnO2). Results show that higher molar ratios of KMnO4 to TCE corresponded with higher TCE oxidation rate under the same initial TCE concentration condition. Moreover, higher TCE concentration corresponded with higher TCE oxidation rate under the same molar ratios of KMnO4 to TCE condition. Results reveal that KMnO4 is a more stable and dispersive oxidant, which is able to disperse into the soil materials and react with organic contaminants effectively. Significant amount of MnO2 production can be effectively inhibited with the addition of Na2HPO4. Results show that the increase in the first-order decay rate was observed when the oxidant concentration was increased, and the half-life was approximately 24.3 to 251 min. However, the opposite situation was observed when the second-order decay rate was used to describe the reaction. Results from the column experiment show that the breakthrough volumes were approximately 50.4 to 5.06 pore volume (PV). Injection of KMnO4 would cause the decrease in TCE concentration through oxidation. Results also indicate that the addition of Na2HPO4 would not inhibit the TCE removal rate. In the second part of this study, a TCE-contaminated site was selected for the conduction of pilot-scale study. A total of eight remediation wells were installed for this pilot-scale study. The initial TCE concentrations of the eight wells were as follows: C1 = 0.59 mg/L, C1-E = 0.64 mg/L, C1-W = 0.61 mg/L, EW-1 = 0.65 mg/L, EW-1E = 0.62 mg/L, EW-1W = 0.57 mg/L, C2 = 0.62 mg/L, C3 = 0.35 mg/L. C1, EW-1, C2, and C3 were located along the groundwater flow direction from the upgradient (C1) to the downgradient location (C3), and the distance between each well was 3 m. C1-E and C1-W were located in lateral to C1 with a distance of 3 m to C1. EW-1E and EW-1W were in lateral to EW-1 with a distance of 3 m to EW-1. In the first test, 2,700 L of KMnO4 solution was injected into each of the three injection wells (C1, C1-E, and C1-W) with concentration of 5,000 mg/L. Three injections were performed with an interval of 6 hr between each injection. After injection, the TCE concentrations in those three wells dropped down to below detection limit (<0.0025 mg/L). However, no significant variations in TCE concentrations were observed in other wells. In the second test, 2,700 L of KMnO4 solution was injected into injection well (EW-1) with concentration of 5,000 mg/L. Six injections were performed with an interval of 6 hr between each injection. After injection, the TCE concentrations in the injection well dropped down to below detection limit (<0.0025 mg/L). TCE concentrations in (C1, C1-E, C1-W, EW-1E, EW-1W, C2, and C3) dropped to 0.35-0.49 mg/L. After injection, no significant temperature and pH variation was observed. However, increase in conductivity and oxidation-reduction potential (ORP) was observed. This indicates that the KMnO4 oxidation process is a potential method for TCE-contaminate site remediation. The groundwater conductivity increased from 500 £gS/cm to 1,000 £gS/cm, and ORP increased from 200 to 600 mv. Increase in KMnO4, MnO2, and total Mn was also observed in wells. Results from the slug tests show that the hydraulic conductivity remained in the range from 10-4 to 10-5 m/sec before and after the KMnO4 injection.
12

Persulfate Persistence and Treatability of Gasoline Compounds

Sra, Kanwartej Singh January 2010 (has links)
Petroleum hydrocarbons (PHCs) such as gasoline are ubiquitous organic compounds present at contaminated sites throughout the world. Accidental spills and leakage from underground storage tanks results in the formation of PHC source zones that release hundreds of organic compounds, including the high impact, acutely toxic and highly persistent aromatics (e.g., benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) into groundwater. Contamination by these compounds continues to persist until the PHC source zone is treated in place or removed. In situ chemical oxidation (ISCO) employing persulfate was identified as a potentially viable technology for the treatment of PHC source zones. The effectiveness and efficiency and, therefore, the overall economic feasibility of a persulfate-based ISCO treatment system depend upon the reactivity of the target organic compounds and the interaction of persulfate with aquifer media. The objective of this research was to investigate the persistence of unactivated and activated persulfate in the presence of aquifer materials, and to examine persulfate oxidation of PHC compounds at both the bench- and pilot-scales. A series of bench-scale studies were performed to estimate persulfate degradation kinetic parameters in the presence of seven well-characterized, uncontaminated aquifer materials and to quantify the changes in specific properties of these materials. Batch experiments were conducted in an experimental system containing 100 g of solids and 100 mL of persulfate solution at 1 or 20 g/L. Column experiments were designed to mimic in situ conditions with respect to oxidant to solids mass ratio and were performed in a stop-flow mode using a 1 g/L persulfate solution. The degradation of persulfate followed a first-order rate law for all aquifer materials investigated. An order of magnitude decrease in reaction rate coefficients was observed for systems that used a persulfate concentration of 20 g/L as compared to those that used 1 g/L due to ionic strength effects. As expected, the column experiments yielded higher reaction rate coefficients than batch experiments for the same persulfate concentration due to the lower oxidant to solids mass ratio. Bench-scale data was used to develop a kinetic model to estimate the kinetic response of persulfate degradation during these tests. The push-pull tests involved the injection of persulfate (1 or 20 g/L) and a conservative tracer into a hydraulically isolated portion of the sandy aquifer at CFB Borden, Canada. The kinetic model developed from the bench-scale data was able to reproduce the observed persulfate temporal profiles from these push-pull tests. This implies that persulfate degradation kinetics is scalable from bench-scale to in situ scale, and bench tests can be employed to anticipate in situ degradation. The estimated reaction rate coefficients indicate that persulfate is a persistent oxidant for the range of aquifer materials explored with half lives ranging from 2 to 600 days, and therefore in situ longevity of persulfate will permit advective and diffusive transport in the subsurface. This is critical for successful delivery of oxidant to dispersed residuals in the subsurface. Activation of persulfate is generally recommended to enhance its oxidation potential and reactivity towards organic compounds. This approach may influence the stability of persulfate-activator system in the presence of aquifer materials. A series of batch tests were performed to investigate persistence of persulfate at two concentrations (1 or 20 g/L) using three contemporary activation strategies (citric acid chelated-ferrous, peroxide and high pH ) in the presence of 4 well-characterized, uncontaminated aquifer materials. Chelation by citric acid was ineffective in controlling the interaction between persulfate and Fe(II) and a rapid loss in persulfate concentration was observed. Higher Fe(II) concentration (600 mg/L) led to greater destabilization of persulfate than lower Fe(II) concentration (150 mg/L) and the persulfate loss was stoichiometrically equivalent to the Fe(II) concentration employed. Subsequent to this rapid loss of persulfate, first-order degradation rate coefficients (kobs) were estimated which were up to 4 times higher than the unactivated case due to the interaction with Fe(III) and CA. Total oxidation strength (TOS) was measured for peroxide activation experiments and was observed to decrease rapidly at early time due peroxide degradation. This was followed by slow degradation kinetics similar to that of unactivated persulfate implying that the initial TOS degradation was peroxide dominated and the long-term kinetics were dominated by persulfate degradation. The kobs used to capture TOS degradation for later time were shown to depend upon unactivated persulfate and peroxide degradation rate coefficients, and peroxide concentration. Either a slow peroxide degradation rate and/or higher peroxide concentration allow a longer time for peroxide and persulfate to interact which led to kobs ~1 to 100 times higher than kobs for unactivated persulfate. For alkaline activation, kobs were only 1 to 4 times higher than unactivated persulfate and therefore alkaline conditions demonstrated the least impact on persulfate degradation among the various activation strategies used. For all activation trials, lower stability of persulfate was observed at 1 g/L as compared to 20 g/L due to insufficient persulfate and/or ionic strength effects. A series of batch reactor trials were designed to observe the behavior of the nine high impact gasoline compounds and the bulk PHC fraction measures subjected to various persulfate activation strategies over a 28-day period. This bench-scale treatability used unactivated persulfate (1 or 20 g/L) and activated persulfate (20 g/L). Activation employed chelated-Fe(II), peroxide, high pH or two aquifer materials as activators. No significant oxidation of the monitored compounds was observed for unactivated persulfate at 1 g/L, but 20 g/L persulfate concentration resulted in their near-complete oxidation. Oxidation rates were enhanced by 2 to 18 times by activation with peroxide or chelated-Fe(II). For alkaline activation, pH 11 trials demonstrated ~2 times higher oxidation rates than the unactivated results. For pH 13 activation the oxidation rates of benzene, toluene and ethylbenzene were reduced by 50% while for the remaining monitored compounds they were enhanced by 5 to 100%. Natural activation by both aquifer materials produced oxidation rates similar to the unactivated results, implying that either activation by minerals associated with aquifer material was not significant or that any potential activation was offset by radical scavenging from aquifer material constituents. Acid-catalyzation at pH <3 may enhance oxidation rates in weakly buffered systems. Oxidation of the monitored compounds followed first-order reaction kinetics and rate coefficients were estimated for all the trials. Overall, activated and unactivated persulfate appear to be suitable for in situ treatment of gasoline. Persulfate under unactivated or naturally activated conditions demonstrated significant destruction of gasoline compounds and showed higher persulfate persistence when in contact with aquifer solids as compared to chelated-Fe(II) or peroxide-activated persulfate systems. This observation was used as the basis for selecting unactivated sodium persulfate for a pilot-scale treatment of gasoline-contaminated source zone at CFB Borden, Canada where a ~2000 L solution of persulfate (20 g/L) was injected into a PHC source zone. Concentration of organics and inorganics were frequently monitored over a 4 month period across a 90 point monitoring fence line installed down-gradient. Treatment performance was measured by estimating organic and inorganic mass loading across the monitoring fence. Increased mass loading for sodium was observed over time as the treatment volume moved across the fence-line indicating transport of the inorganic slug created upon oxidant injection. The mass loading also increased for sulfate which is a by-product generated either due to persulfate degradation during oxidation of organic compounds or during its interaction with aquifer materials. Oxidation of organic compounds was evident from the enhanced mass loading of dissolved carbon dioxide. More importantly, a significant (45 to 86%) decrease in mass loading of monitored compounds was observed due to oxidation by injected persulfate. The cumulative mass crossing the monitoring fence-line was 20 to 50% lower than that expected without persulfate treatment. As the inorganic slug was flushed through the source zone and beyond the monitoring fence, the mass loading rate of sodium, sulfate and carbon dioxide decreased and approached background condition. Mass loading of the monitored compounds increased to within 40 to 80% of the pre-treatment conditions, suggesting partial rebound. These investigations assessed the impact of activation on persulfate persistence and treatability of gasoline and served to establish guidelines for anticipating field-scale persulfate behavior under similar conditions. In summary, unactivated persulfate is a stable oxidant in the presence of aquifer materials and its persistence depends upon TOC and Fe(Am) content of the materials, ionic strength, and aquifer to solids mass ratio. Persulfate exhibits significant destruction of gasoline compounds and can be employed for the remediation of gasoline-contaminated sites. Peroxide and chelated-Fe(II) enhance oxidation rates of these compounds, but reduce stability of the persulfate-activator system. Persulfate activation using high pH conditions does not significantly impact persulfate persistence but reduces the overall destruction of gasoline compounds. Therefore, activation imposes a trade-off between enhanced oxidation rates and reduced persulfate persistence. Kinetic model is representative of persulfate degradation at bench- and pilot-scales and can be used for estimation of in situ degradation. The quantification of oxidation rates for gasoline compounds under activated and unactivated persulfate conditions will assist decision-making for identification of appropriate remediation options when targeting contamination by gasoline or by specific high impact gasoline compounds. While persulfate oxidation resulted in partial treatment of a small gasoline source zone, aggressive persulfate load will be required during injection for a complete clean-up. Overall, persulfate-based in situ chemical oxidation was demonstrated to be an effective and a viable technology for the remediation of contaminated soil and groundwater.
13

In situ Chemical Oxidation using Unactivated Sodium Persulphate at a Former Gasoline Station

Biswas, Neelmoy Chaitanya 29 June 2011 (has links)
The contamination of aquifer systems by petroleum hydrocarbons is a global problem. Underground storage tanks used for storing these hydrocarbons often leak, resulting in subsurface contamination. The hazards associated with petroleum hydrocarbon contamination are mainly attributable to the BTEX compounds, namely benzene, toluene, ethylbenzene and xylenes together with trimethylbenzenes (TMBs) and naphthalene due to their potential to impact human health and the ease with which they can enter the groundwater system. In situ chemical oxidation (ISCO) is the delivery of strong chemical oxidants to the subsurface for the purpose of treating organic contaminants. ISCO can be an effective way to remediate organic contaminants from the soil and groundwater. Sodium persulphate is one of the newer oxidants to gain widespread use in treating petroleum hydrocarbon contamination, though without being fully understood. This investigation tested the ability of unactivated sodium persulphate in treating dissolved phase and residual BTEX contamination through bench-scale laboratory tests and a pilot-scale field study. A degradation potential batch reactor test was carried out to assess the efficacy of unactivated sodium persulphate in oxidizing petroleum hydrocarbons present in contaminated groundwater as well as its effect on aquifer material from a field site. This test was carried out at a sodium persulphate concentration of 20 g/L. Results from this test did not follow the expected first-order degradation, and so subsequent experiments were carried out using a sodium persulphate concentration of 100 g/L. A test to determine the degree of interaction between the oxidant and aquifer material was also conducted. It was found that the degree of natural oxidant interaction for the field site in question was very low. 1000 kg of sodium persulphate was dissolved in nearly 10,000 L of water and injected into the subsurface. Electrical conductivity (EC), pH, sodium, persulphate, sulphate and BTEX were all monitored during the subsequent 152-day post-injection monitoring period. An empirical relationship was determined between EC and the concentration of sodium in groundwater. This enabled the use of EC as a real-time tracer to track the progress of the injectate. Field results supported predictions based on a simulation model that density-driven flow would play an important role in the delivery of the injectate. A portion of the injectate was believed to have been missed by the monitoring network. Areas that did show elevated tracer results in some cases showed a decrease in BTEX concentrations. Results were categorized in four ways. The first category had wells that showed strong evidence of injectate presence but little to no change in BTEX levels. The second category was comprised of wells that showed a reduction in BTEX levels along with the presence of injectate. BTEX levels in some wells rebounded towards the end of the study period. The third category consisted of wells that showed the presence of dilute injectate but did not show any reduction in BTEX concentrations. The fourth and final category was of wells that showed no evidence of having been affected by the injectate in any way. BTEX levels were the same as background. The oxidation of BTEX by unactivated sodium persulphate was found to be successful, though the vagaries of oxidant delivery and field sampling made difficult the accurate determination of the degree of success.
14

Avaliação da interação entre o persulfato de potássio com solos brasileiros para a utilização da tecnologia de remediação por oxidação química in situ. / Evaluation of interaction between potassium persulfate and Brazilian soils for use in remediation technology by in situ chemical oxidation.

Fernanda Campos de Oliveira 19 May 2015 (has links)
Recentemente, o uso de persulfato em processo de oxidação química in situ em áreas contaminadas por compostos orgânicos ganhou notoriedade. Contudo, a matriz sólida do solo pode interagir com o persulfato, favorecendo a formação de radicais livres, evitando o acesso do oxidante até o contaminante devido a oxidação de compostos reduzidos presentes no solo ou ainda pela alteração das propriedades hidráulicas do solo. Essa pesquisa teve como objetivos avaliar se as interações entre a solução de persulfato com três solos brasileiros poderiam eventualmente interferir sua capacidade de oxidação bem como se a interação entre eles poderia alterar as propriedades hidráulicas do solo. Para isso, foram realizados ensaios de oxidação do Latossolo Vermelho (LV), Latossolo Vermelho Amarelo (LVA) e Neossolo Quartzarênico (NQ) com solução de persulfato (1g/L e 14g/L) por meio de ensaios de batelada, bem como a oxidação do LV por solução de persulfato (9g/L e 14g/L) em colunas indeformadas. Os resultados mostraram que o decaimento do persulfato seguiu modelo de primeira ordem e o consumo do oxidante não foi finito. A maior constante da taxa de reação (kobs) foi observada para o reator com LV. Essa maior interação foi decorrente da diferença na composição mineralógica e área específica. A caulinita, a gibbsita e os óxidos de ferro apresentaram maior interação com o persulfato. A redução do pH da solução dos reatores causou a lixiviação do alumínio e do ferro devido a dissolução dos minerais. O ferro mobilizado pode ter participado como catalisador da reação, favorecendo a formação de radicais livres, mas foi o principal responsável pelo consumo do oxidante. Parte do ferro oxidado pode ter sido precipitado como óxido cristalino favorecendo a obstrução dos poros. Devido à maior relação entre massa de persulfato e massa de solo, a constante kobs obtida no ensaio com coluna foi 23 vezes maior do que a obtida no ensaio de batelada, mesmo utilizando concentração 1,5 vezes menor no ensaio com coluna. Houve redução na condutividade hidráulica do solo e o fluxo da água mostrou-se heterogêneo após a oxidação devido a mudanças na estrutura dos minerais. Para a remediação de áreas com predomínio de solos tropicais, especialmente do LV, pode ocorrer a formação de radicais livres, mas pode haver um consumo acentuado e não finito do oxidante. Verifica-se que o pH da solução não deve ser inferior a 5 afim de evitar a mobilização de metais para a água subterrânea e eventual obstrução dos poros por meio da desagregação dos grãos de argila. / Recently the persulfate application for in situ chemical oxidation at areas contaminated by organic compounds gained notoriety. However, the persulfate can interact with the solid matrix of the soil favoring the formation of free radicals, avoiding the oxidant access to the contaminant due to the oxidation of reduced compounds present in the soil or by changing the hydraulic properties of the soil. This research aimed to evaluate if the interactions between the persulfate solutions and three Brazilian tropical soils could eventually interfere on the persulfate oxidation capacity and if the interaction between them could modify the hydraulic properties of the soil. For such, oxidation tests were performed with soils: Latossolo Vermelho (LV), Latossolo Vermelho Amarelo (LVA) and Neossolo Quartzarênico (NQ) with persulfate solution (1 and 14 g/L) through batch tests and LV oxidation by persulfate solution (9 and 14 g/L) on undisturbed columns. The results showed that persulfate decay followed a first order model and oxidant consumption was not finite. The higher reaction rate coefficient (kobs) was observed in the reactor with LV. This higher interaction was due to the difference in the mineralogical composition and surface area. Kaolinite, gibbisita and iron oxides showed greater interaction with persulfate. The pH reduction on the reactor solution caused the aluminum and iron leaching due to dissolution of minerals. The mobilized iron may have participated as a reaction catalyst favoring the formation of free radicals although it was the major responsible for the oxidant consumption. Part of oxidized iron may have been precipitated as crystalline oxide favoring the clogged pores. As a consequence of the higher mass proportion between persulfate and soil, the kobs constant obtained in the column test was 23 times higher than the one observed on the batch test, even utilizing a concentration 1.5 times lower than bath test. There was a reduction in the soil hydraulic conductivity and the water flow proved to be heterogeneous after oxidation due to changes in minerals structure. For remediation purposes in areas with predominance of tropical soils, especially LV, the formation of free radicals may occur but an accented and not finite oxidant consumption may happen. It is verified that the pH solution should not be inferior than 5 to prevent the mobilization of metals to the groundwater and a possible pores clogging by the breakdown of the clay grains.
15

Aplicação de técnicas químicas de remediação em áreas contaminadas por compostos organoclorados / Application of chemical remediation technologies for organochlorine contaminated sites

Cunha, Alaine Santos da 07 October 2010 (has links)
Grande parte das áreas contaminadas conhecidas atualmente advém de práticas passadas onde os cuidados com a proteção à saúde humana e ao meio ambiente eram desconhecidos ou ignorados. O uso indiscriminado de produtos solventes clorados fez com que tais compostos se tornassem uma das principais fontes de contaminação no setor industrial. Por serem compostos de alta toxicidade, quando presentes na água subterrânea, mesmo em baixas concentrações, a tornam imprópria para o consumo. Técnicas de remediação como atenuação natural, ou que envolvam bombeamento e tratamento de água subterrânea contaminada por solventes clorados, vêm sendo substituídas por metodologias químicas destrutivas, por apresentarem resultados satisfatórios em um período de tempo inferior às técnicas utilizadas anteriormente. Este trabalho objetiva apresentar os resultados obtidos em duas áreas industriais onde foram aplicadas técnicas de remediação, envolvendo a redução química in situ, através da injeção de polisulfeto de cálcio e a oxidação química in situ, com a injeção de permanganato de potássio. Em ambas as áreas, os contaminantes organoclorados são os principais compostos de interesse presentes na água subterrânea. A redução química in situ é uma metodologia que utiliza um agente químico para reduzir óxidos de ferro III, presentes naturalmente no aquífero sedimentar, e transformá-los em ferro II que, por sua vez reduzirá contaminantes organoclorados. A principal característica desta metodologia é a eliminação contígua de dois átomos de cloro das moléculas dos contaminantes, o que tende e diminuir ou eliminar o acúmulo de subprodutos tóxicos como cloreto de vinila. Na oxidação química in situ, o agente promove a transferência de elétrons, onde os íons Cl- das moléculas dos contaminantes são substituídos por H+. Devido à baixa reatividade entre o permanganato de potássio e a matriz do aquífero durante as reações de oxidação química, este oxidante pode ser transportado pelos processos advectivo e dispersivo juntamente com o fluxo da água subterrânea e persistir por um período maior de tempo, reagindo com os contaminantes orgânicos. Ensaios de bancada com solo saturado contaminado de uma das áreas de estudo mostraram excelentes resultados na utilização do polisulfeto de cálcio, mas o mesmo não foi observado no teste piloto realizado em campo. Embora tenha sido observada dispersão do produto nas proximidades de pelo menos um dos pontos onde a solução foi injetada, notou-se que não houve redução significativa dos contaminantes, evidenciando que o ferro II não foi eficaz no processo de degradação. Isto pode ter sido ocasionado por uma série fatores, como possíveis reações, características hidráulicas, ou geológicas do meio. Portanto, o prosseguimento desta metodologia como alternativa de remediação para toda a área impactada foi descontinuado, tornando necessário novos estudos para avaliar a melhor técnica aplicável na área. Quanto à área onde foi aplicada a oxidação química, a remediação foi considerada eficiente. Ao longo do período de vinte e dois meses, quando foram realizadas atividades de monitoramento da água subterrânea, observou-se a presença do permanganato de potássio nas áreas mais impactadas das plumas de contaminação, fato que permitiu o processo de transferência de elétrons e consequentemente a oxidação dos contaminantes. Vinte e dois meses após as atividades de injeção, o principal contaminante identificado na área, o 1,-1-dicloroeteno, foi detectado em apenas um ponto com concentração superior a meta de remediação obtida anteriormente à injeção. Considerando que durante a sequência das atividades relacionadas à remediação, este contaminante sofreu alterações em seus valores toxicológicos estabelecidos pela Agência de Proteção Ambiental dos Estados Unidos, e passou a ser considerado um composto não carcinogênico, todos os poços apresentaram-se com concentrações inferiores a nova meta de remediação calculada. Como efeito colateral, foi observado o aumento das concentrações de metais dissolvidos, como: alumínio, bário, cromo e ferro. Tal mobilização de metais para a água subterrânea pode ser considerada temporária. Após o total consumo do permanganato de potássio pelos contaminantes ainda presentes no meio, as características físico-químicas do aquífero retornarão à situação identificada naturalmente, permitindo a precipitação dos metais. / Most of the currently known contaminated areas are the result of past practices, where precautions regarding protection of human health and the environment were either unknown or ignored. The indiscriminate use of chlorinated solvents is the driving factor that has led to such compounds becoming one of the main sources of contamination in the industrial sector. Chlorinated solvents are highly toxic and, when present at even low concentrations in groundwater, they make this resource unfit for human consumption. Such remediation techniques as natural attenuation, or that involve pumping and treatment of groundwater contaminated by chlorinated solvents, are currently being replaced by destructive chemical methods, as they show satisfactory results in a shorter period of time than previously used techniques. This study has the objective of showing the results obtained at two industrial sites where remediation techniques have been used involving in-situ chemical reduction, through injection of calcium polysulfide, and in-situ chemical oxidation, with injection of potassium permanganate. At both sites, organochlorine contaminants are the main compounds of concern present in groundwater. In-situ chemical reduction is a methodology that uses a chemical agent in order to reduce iron III oxides, naturally present in the sedimentary aquifer, and transform them into iron II which, in turn, reduces the organochlorine contaminants. The principal characteristic of this methodology is that of contiguous elimination of two chlorine atoms from contaminant molecules, which tends to reduce or eliminate accumulation of such toxic byproducts as vinyl chloride. In in-situ chemical oxidation, the chemical agent brings about a transfer of electrons, where the Cl- ions of contaminant molecules are replaced by H+ ions. Due to the low degree of reactivity between potassium permanganate and the aquifer matrix during chemical oxidation reactions, this oxidizing agent can be transported via groundwater flow, by advective and dispersive processes, and persist for a longer period of time, reacting with organic contaminants. Bench tests performed with contaminated saturated soil from one of the sites under study showed excellent results through the use of calcium polysulfide; however, the same results were not observed during a pilot test performed in the field. Although product dispersion was observed in the vicinity of at least one of the points where the solution had been injected, it was found that there was no significant reduction of contaminants, showing that iron II was not effective in enhancing the degradation process. This could have been the result of a series of factors, for example, possible reactions or the hydraulic or geological characteristics of the medium. Therefore, it was decided not to continue with use of this methodology as a remediation alternative for the whole impacted area, making it necessary for further studies in order to assess the best technique applicable at the site. With respect to the site where a chemical oxidation approach was adopted, remediation was considered to be effective. Over a period of twenty-two months, during which groundwater monitoring activities were performed, the presence of potassium permanganate was observed in the most impacted areas of the contamination plumes, a fact that allowed for the electron transfer process and, consequently, contaminant oxidation. Twenty-two months after initiation of injection activities, the main contaminant identified at the site (1,1-dichloroethene) was only detected at one point at a concentration exceeding the post-remediation target value established prior to commencing these activities. Considering that, during the sequence of activities related to the remediation process, this contaminant underwent changes in its toxicological values established by the United States Environmental Protection Agency, and came to be considered a non-carcinogenic compound, all wells showed concentrations below the new calculated post-remediation target. As a collateral effect, there was found to be an increase in concentrations of such dissolved metals as aluminum, barium, chromium and iron. Such mobilization of metals to groundwater can be considered a temporary effect. Following complete consumption of potassium permanganate by contaminants still present in the medium, the physical-chemical characteristics of the aquifer will return to the situation occurring naturally, allowing for the precipitation of these metals.
16

Aplicação de técnicas químicas de remediação em áreas contaminadas por compostos organoclorados / Application of chemical remediation technologies for organochlorine contaminated sites

Alaine Santos da Cunha 07 October 2010 (has links)
Grande parte das áreas contaminadas conhecidas atualmente advém de práticas passadas onde os cuidados com a proteção à saúde humana e ao meio ambiente eram desconhecidos ou ignorados. O uso indiscriminado de produtos solventes clorados fez com que tais compostos se tornassem uma das principais fontes de contaminação no setor industrial. Por serem compostos de alta toxicidade, quando presentes na água subterrânea, mesmo em baixas concentrações, a tornam imprópria para o consumo. Técnicas de remediação como atenuação natural, ou que envolvam bombeamento e tratamento de água subterrânea contaminada por solventes clorados, vêm sendo substituídas por metodologias químicas destrutivas, por apresentarem resultados satisfatórios em um período de tempo inferior às técnicas utilizadas anteriormente. Este trabalho objetiva apresentar os resultados obtidos em duas áreas industriais onde foram aplicadas técnicas de remediação, envolvendo a redução química in situ, através da injeção de polisulfeto de cálcio e a oxidação química in situ, com a injeção de permanganato de potássio. Em ambas as áreas, os contaminantes organoclorados são os principais compostos de interesse presentes na água subterrânea. A redução química in situ é uma metodologia que utiliza um agente químico para reduzir óxidos de ferro III, presentes naturalmente no aquífero sedimentar, e transformá-los em ferro II que, por sua vez reduzirá contaminantes organoclorados. A principal característica desta metodologia é a eliminação contígua de dois átomos de cloro das moléculas dos contaminantes, o que tende e diminuir ou eliminar o acúmulo de subprodutos tóxicos como cloreto de vinila. Na oxidação química in situ, o agente promove a transferência de elétrons, onde os íons Cl- das moléculas dos contaminantes são substituídos por H+. Devido à baixa reatividade entre o permanganato de potássio e a matriz do aquífero durante as reações de oxidação química, este oxidante pode ser transportado pelos processos advectivo e dispersivo juntamente com o fluxo da água subterrânea e persistir por um período maior de tempo, reagindo com os contaminantes orgânicos. Ensaios de bancada com solo saturado contaminado de uma das áreas de estudo mostraram excelentes resultados na utilização do polisulfeto de cálcio, mas o mesmo não foi observado no teste piloto realizado em campo. Embora tenha sido observada dispersão do produto nas proximidades de pelo menos um dos pontos onde a solução foi injetada, notou-se que não houve redução significativa dos contaminantes, evidenciando que o ferro II não foi eficaz no processo de degradação. Isto pode ter sido ocasionado por uma série fatores, como possíveis reações, características hidráulicas, ou geológicas do meio. Portanto, o prosseguimento desta metodologia como alternativa de remediação para toda a área impactada foi descontinuado, tornando necessário novos estudos para avaliar a melhor técnica aplicável na área. Quanto à área onde foi aplicada a oxidação química, a remediação foi considerada eficiente. Ao longo do período de vinte e dois meses, quando foram realizadas atividades de monitoramento da água subterrânea, observou-se a presença do permanganato de potássio nas áreas mais impactadas das plumas de contaminação, fato que permitiu o processo de transferência de elétrons e consequentemente a oxidação dos contaminantes. Vinte e dois meses após as atividades de injeção, o principal contaminante identificado na área, o 1,-1-dicloroeteno, foi detectado em apenas um ponto com concentração superior a meta de remediação obtida anteriormente à injeção. Considerando que durante a sequência das atividades relacionadas à remediação, este contaminante sofreu alterações em seus valores toxicológicos estabelecidos pela Agência de Proteção Ambiental dos Estados Unidos, e passou a ser considerado um composto não carcinogênico, todos os poços apresentaram-se com concentrações inferiores a nova meta de remediação calculada. Como efeito colateral, foi observado o aumento das concentrações de metais dissolvidos, como: alumínio, bário, cromo e ferro. Tal mobilização de metais para a água subterrânea pode ser considerada temporária. Após o total consumo do permanganato de potássio pelos contaminantes ainda presentes no meio, as características físico-químicas do aquífero retornarão à situação identificada naturalmente, permitindo a precipitação dos metais. / Most of the currently known contaminated areas are the result of past practices, where precautions regarding protection of human health and the environment were either unknown or ignored. The indiscriminate use of chlorinated solvents is the driving factor that has led to such compounds becoming one of the main sources of contamination in the industrial sector. Chlorinated solvents are highly toxic and, when present at even low concentrations in groundwater, they make this resource unfit for human consumption. Such remediation techniques as natural attenuation, or that involve pumping and treatment of groundwater contaminated by chlorinated solvents, are currently being replaced by destructive chemical methods, as they show satisfactory results in a shorter period of time than previously used techniques. This study has the objective of showing the results obtained at two industrial sites where remediation techniques have been used involving in-situ chemical reduction, through injection of calcium polysulfide, and in-situ chemical oxidation, with injection of potassium permanganate. At both sites, organochlorine contaminants are the main compounds of concern present in groundwater. In-situ chemical reduction is a methodology that uses a chemical agent in order to reduce iron III oxides, naturally present in the sedimentary aquifer, and transform them into iron II which, in turn, reduces the organochlorine contaminants. The principal characteristic of this methodology is that of contiguous elimination of two chlorine atoms from contaminant molecules, which tends to reduce or eliminate accumulation of such toxic byproducts as vinyl chloride. In in-situ chemical oxidation, the chemical agent brings about a transfer of electrons, where the Cl- ions of contaminant molecules are replaced by H+ ions. Due to the low degree of reactivity between potassium permanganate and the aquifer matrix during chemical oxidation reactions, this oxidizing agent can be transported via groundwater flow, by advective and dispersive processes, and persist for a longer period of time, reacting with organic contaminants. Bench tests performed with contaminated saturated soil from one of the sites under study showed excellent results through the use of calcium polysulfide; however, the same results were not observed during a pilot test performed in the field. Although product dispersion was observed in the vicinity of at least one of the points where the solution had been injected, it was found that there was no significant reduction of contaminants, showing that iron II was not effective in enhancing the degradation process. This could have been the result of a series of factors, for example, possible reactions or the hydraulic or geological characteristics of the medium. Therefore, it was decided not to continue with use of this methodology as a remediation alternative for the whole impacted area, making it necessary for further studies in order to assess the best technique applicable at the site. With respect to the site where a chemical oxidation approach was adopted, remediation was considered to be effective. Over a period of twenty-two months, during which groundwater monitoring activities were performed, the presence of potassium permanganate was observed in the most impacted areas of the contamination plumes, a fact that allowed for the electron transfer process and, consequently, contaminant oxidation. Twenty-two months after initiation of injection activities, the main contaminant identified at the site (1,1-dichloroethene) was only detected at one point at a concentration exceeding the post-remediation target value established prior to commencing these activities. Considering that, during the sequence of activities related to the remediation process, this contaminant underwent changes in its toxicological values established by the United States Environmental Protection Agency, and came to be considered a non-carcinogenic compound, all wells showed concentrations below the new calculated post-remediation target. As a collateral effect, there was found to be an increase in concentrations of such dissolved metals as aluminum, barium, chromium and iron. Such mobilization of metals to groundwater can be considered a temporary effect. Following complete consumption of potassium permanganate by contaminants still present in the medium, the physical-chemical characteristics of the aquifer will return to the situation occurring naturally, allowing for the precipitation of these metals.
17

Development and Characterization of Controlled-Release Permanganate Gelfor Groundwater Remediation

Gupta, Neha 12 June 2013 (has links)
No description available.
18

<i>In Situ</i> Chemical Oxidation Schemes for the Remediation of Ground Water and Soils Contaminated by Chlorinated Solvents

Li, Xuan 02 July 2002 (has links)
No description available.
19

Processus physico-chimiques à l'origine des différences d'efficacité des techniques de traitement de sols pollués aux hydrocarbures / Physico-chemical processes underlying differences efficiency of treatments of soil contaminated by hydrocarbons

Jousse, Florie 12 January 2016 (has links)
De nos jours, la préservation de l’environnement est un enjeu majeur. Avant cette prise de conscience, de nombreux polluants ont été rejetés dans la nature. Parmi eux, les hydrocarbures sont très souvent rencontrés. Or, ils sont reconnus pour leur toxicité et leur persistance accrue. La mise en place de méthodes efficaces de dépollution est donc primordiale. Les méthodes classiques nécessitent l’excavation ou le pompage des zones contaminées, imposant un coût de dépollution élevé. C’est pourquoi des techniques de dépollution in-situ ont été développées afin de réduire ces coûts, tout en garantissant des rendements de dépollution efficaces. Les travaux menés durant cette Thèse ont permis de déterminer, pour plusieurs techniques de traitement, les facteurs limitants inhérents à la technique, mais aussi de quantifier le rôle du contact entre agents de traitement et zone polluée ou des effets densitaires. Les techniques in-situ utilisées sont : l’oxydation chimique in situ, le lavage par tensio-actifs, l’injection d’air (sparging) et le traitement thermique. Trois niveaux d’expérience ont été étudiés : le batch, la colonne et le pilote 3D. Les réacteurs fermés, ont permis la comparaison des oxydants en statiques face à une matrice plus ou moins riche en matières organiques. Les colonnes ont mis en avant l’influence du mode d'injection appliqué vis-à-vis des propriétés physico-chimiques des polluants (cinétique réactionnelle, pression de vapeur, température d’ébullition, etc.). Les pilotes 3D, d’un volume d’un 1 m3, ont permis de comparer les différentes techniques sur un milieu hétérogène présentant des zones peu perméables, difficiles à traiter. A partir des résultats acquis et de modélisation numérique des expériences, il est dorénavant possible de mieux ajuster la méthode de traitement et surtout de comparer différentes méthodes pour un contexte hydrogéologique donné. / Pollution of soils and aquifers by Diesel fuel compounds is a widespread remediation issue. Problems due to soil remediation are more and more difficult to treat. Hydrocarbons are often encountered. But they are known for their toxicity and increased persistence. The establishment of effective remediation methods is paramount. Conventional methods require excavation or pumping contaminated areas requiring a high abatement costs. That is why, in-situ remediation techniques have been developed to reduce these costs while ensuring efficient pollution control returns. The work done during this thesis has determined for several treatments, the limiting factors inherent the treatment, but also quantifies the role of contact between agents and pollutants or density effects. In-situ treatments are: in situ chemical oxidation, surfactants flushing, air sparging and thermic treatment. Three levels of experience were investigated: batch, column and 3D Pilot. Batchs, enabled the comparison of oxidants in sand and natural soil. The columns have highlighted the influence of the injection method applied occurs toward the physical and chemical properties of contaminants (reaction kinetics, vapor pressure, boiling temperature, etc.). 3D Pilot, have a volume of 1m3. They were used to compare the different treatments on a heterogeneous medium having low permeability zones, difficult to treat. From the results of numerical modeling and experiences, it is possible to adjust the treatment method and especially to compare different methods for a given hydrogeological context.
20

Optimization and Analysis of a Slow-Release Permanganate Gel for Groundwater Remediation in Porous and Low-Permeability Media

Hastings, Jesse L. 17 September 2015 (has links)
No description available.

Page generated in 0.5176 seconds